CS565: Intelligent Systems and Interfaces

Vector Semantics

Semester: Jan – May 2019

Ashish Anand

Associate Professor, Dept of CSE

IIT Guwahati

Announcements

- Scribe
 - Ankit (184101005), Abhinav Reddy (150101039): 18th Mar, 2019
- 2nd Assignment is Posted
- Tentative Mid-Term Project Report Submission: 3rd April, Wednesday
- Mid-Term Project Discussion/Evaluation: 22nd March (2nd-half)/23rd March

Objective

- Discuss Vector Representation of Words
 - What we expect from a representation?
 - What is meaning of words?
 - Basis and intuition of vector representation

Vector Semantics

- Study of vector representation of words
 - model to represent meaning of words
- Question is what are the different aspects of meaning ?
 - Answer: Lexical semantics linguistic study of word meaning

Desiderata

- Examples
 - <u>Class</u> : Teaching group / Economic Group / Rank
 - <u>Right</u>: Correct / A direction
 - <u>Mouse:</u> Animal / a specific computer peripheral
 - Multiple meaning: word sense

• <u>Relation 1: Synonyms/Antonyms</u>

- Synonym: one word has a sense whose meaning is identical to a sense of another word, or nearly identical
- Examples: couch/sofa vomit/throw up
- Antonym: meanings are opposite
- Examples: long/short big/little fast/slow rise/fall

Word Similarity: Relations beyond synonyms/antonyms

- Word Similarity
 - Words with similar meanings but not synonyms
 - Cat / Dog

word1	word2	similarity
vanish	disappear	9.8
behave	obey	7.3
belief	impression	5.95
muscle	bone	3.65
modest	flexible	0.98
hole	agreement	0.3

SimLex-999 dataset (Hill et al., 2015)

Adapted from Jurafsky and Martin's slide

Word Relatedness / Word Association: Relation beyond similarity

- Words are related by <u>semantic frame or field</u>
 - Cat, Dog : similar
 - Student, Teacher: related but not similar
 - Relatedness: co-participation in a shared event

Semantic Field

- Set of words covering a particular semantic domain, and
- Have structured relations among them
- Example
 - University
 - Teacher, student, study, class, lecture, assignment, project
 - House
 - Room, door, furniture, bedroom

Adapted from Jurafsky and Martin's slide

Semantic Frame and Field

• Topic Modeling: example of semantic field

- Semantic Frames and Roles
 - Set of words denoting perspectives or participants in a particular event type
 - Different agents playing distinct role in a single event
 - Teaching/Learning
 - Doctor/Patient
 - Buyer/Seller

Taxonomic Relations

One sense is a **subordinate/hyponym** of another if the first sense is more specific, denoting a subclass of the other

- car is a subordinate of vehicle
- mango is a subordinate of fruit

Conversely superordinate / hypernym

- vehicle is a superordinate of car
- *fruit* is a subodinate of *mango*

Superordinate	vehicle	fruit	furniture	
Subordinate	car	mango	chair	

Adapted from Jurafsky and Martin's slide

Connotation: Affective Meaning

- Aspects of word's meaning that are related to a writer's or reader's emotions, opinions, or evaluations.
 - Happy: Positive connotations vs Sad: Negative connotations
 - Great: Positive evaluation vs Terrible: negative evaluation
- Three important dimension of affective meaning
 - Valence: pleasantness of the stimulus (happy vs annoyed)
 - Arousal: intensity of emotion provoked by the stimulus (excited vs calm)
 - **Dominance:** degree of control exerted by the stimulus (controlling vs awed)

Connotation: Three dimensional vector representation

	Valence	Arousal	Dominance
courageous	8.05	5.5	7.38
music	7.67	5.57	6.5
heartbreak	2.45	5.65	3.58
cub	6.71	3.95	4.24
life	6.68	5.59	5.89

In Summary

- Words
 - Have multiple senses, leading to complex relations between words
 - Synonymy / Antonymy
 - Similarity
 - Relatedness
 - Taxonomic Relations: Hypernym/Hyponym
 - Connotation
- Challenge is how we obtain an appropriate representation

Earlier attempts to define meaning of word or concept

- William Labov. 1975
- What are these?
- Cup or bowl?

The category depends on complex features of the object (diameter. etc)

The category depends on the context! (If there is food in it, it's a bowl)

Distributional hypothesis: radically different approach

- Ludwing Wittgenstein
 - Linguist / Philosopher of language
 - Meaning of a word is its use in language
- Joos, Harris and Firth
 - Define a word by the distribution it occurs in language use

Context determines meaning of words

- Harris (1954)
 - "Oculist and eye-doctor ... occur in almost the same environments"
 - Generalize it: "If A and B have almost identical environments ... we say that they are synonyms"
- Firth (1957)
 - "You shall know a word by the company it keeps!"

Context determines meaning of word

A bottle of <u>tesquino</u> is on the table. Everybody likes <u>tesquino</u>. <u>Tesquino</u> makes you drunk. We make <u>tesquino</u> out of corn.

Broad categories of vector space models

- Long and Sparse vector representation
 - Co-occurrence matrix based methods (term-doc, term-term matrices based on MI, tf-idf etc.)
- Short and Dense vector representation
 - Dimensionality reduction techniques such as Singular value decomposition (Latent Semantic Analysis) on co-occurrence matrix
 - Neural language inspired models (skip-grams, CBOW)
- Other Methods
 - Clustering methods: Brown Clusters [Collins lecture]
 - Hybrid methods: GloVe

Co-occurrence Matrix

Building block of vector space models

Term Document Matrix: Document Vector

- Each cell: count of word *w* in a document *d*:
 - Each document is a count vector in \mathbb{N}^{v} : a column below

	As You Lik	e It	Twelfth Night	Julius Caesar	Henry V
battle		1	1	8	15
soldier		2	2	12	36
fool		37	58	1	5
clown		6	117	0	0

Term-Document Matrix: Document Vector

- Initially defined as vector representation for documents.
- Each document is being represented in |V|- dimensional vector space.
- Notion: Similar documents tend to use similar words.
- Document vectors used in document clustering and several other Information Retrieval (IR) tasks.

Term-Document Matrix: Document vector

Figure 19.3 A spatial visualization of the document vectors for the four Shakespeare play documents, showing just two of the dimensions, corresponding to the words *battle* and *fool*. The comedies have high values for the *fool* dimension and low values for the *battle* dimension.

Term-Document Matrix: Word vector

- Row-vector can be used as vector representation of word
- Notion: meaning of a word can be inferred from the documents it tends to occur in.
- Two words are similar if their vectors are similar.

	As You Lik	ke lt	Twelfth Night	Julius Caesar	Henry V
battle		1	1	8	15
soldier		2	2	12	36
fool		37	58	1	5
clown		6	117	0	0

Term-Term Matrix: Word vector

- Alternate names
 - Word-word matrix
 - word-context matrix

Term-term Matrix

- Multiple ways to fill the |V| x |V| matrix
 - Each cell records number of times the *row (target)* words co-occur with the *column (context)* words.
 - context: document, then "how many times the two words co-occur in the same document.
 - **context**: window of *n* words around the word, then "number of times column words occur within *n* words either side of the row word".

Co-occurrence takes into account two kinds of association

- Syntagmatic Association (First-order association)
 - They occur nearby each other.
 - Drink is first-order associate of water
- Paradigmatic Association (Second-order association)
 - They occur with similar words.
 - Drink is second-order associate of words like sip, swallow

Word-context matrix: An Example

sugar, a sliced lemon, a tablespoonful of **apricot** their enjoyment. Cautiously she sampled her first **pineapple** well suited to programming on the digital **computer**. for the purpose of gathering data and **information**

preserve or jam, a pinch each of, and another fruit whose taste she likened In finding the optimal R-stage policy from necessary for the study authorized in the

	aardvark	computer	data	pinch	result	sugar	
apricot	0	0	0	1	0	1	
pineapple	0	0	0	1	0	1	
digital	0	2	1	0	1	0	
information	0	1	6	0	4	0	

Word-context matrix: what determines size of context ?

- Objective at hands
 - Shorter window (1-3), more syntactic representation
 - Longer window (4-10), more <u>semantic</u> representation

Word-context matrix: Issue with raw count

- Raw word count or frequency is not a good measure. [Why?]
 - May not be very informative
 - Example of very frequent and common words such as "the" and "of" not having discriminative power.

- Can you think of measure which can say whether a <u>context word</u> is informative about the <u>target word</u>?
 - Answer lies in realizing similarity with a particular topic we discussed earlier in the course.

Word-context matrix: Alternative Measures

- Positive Pointwise Mutual Information [PPMI] [DIY]
 - Definition
 - Why positive adjective?
 - What happens with rare context words?
 - Do we need smoothing methods here?
- Tf-idf (Term Frequency Inverse Document Frequency)

tf-idf: combine two factors

• **tf: term frequency**. frequency count (usually log-transformed):

tf-idf value for word t in document d:

$$w_{t,d} = \mathrm{tf}_{t,d} \times \mathrm{idf}_t$$

Summary: tf-idf

- Compare two words using tf-idf cosine to see if they are similar
- Compare two documents
 - Take the centroid of vectors of all the words in the document
 - Centroid document vector is:

$$d = \frac{w_1 + w_2 + \dots + w_k}{k}$$

References

- <u>https://web.stanford.edu/~jurafsky/slp3/6.pdf</u>
- Slides adapted from https://web.stanford.edu/~jurafsky/slp3/slides/vector1.pptx