CS565: Intelligent Systems and Interfaces

Language Modeling

Semester: Jan – May 2019

Ashish Anand

Associate Professor, Dept of CSE

IIT Guwahati

Announcements

- Scribe
 - Sarthak Tripathi, Abhijeet Pandey: 30th Jan Lec

- Assignment 1 posted on canvas
 - Due Date: 10th February

Recap

- In the last lecture
 - Language Modeling: Definition
 - Language Modeling: N-gram Models
 - Language Modeling: Parameter Estimation

Objective

• Discuss why STOP symbol is used ?

- Smoothing Techniques
 - Laplace or Add-1 Smoothing
 - Add-K Smoothing
 - Backoff and Interpolation methods: Generic Idea
 - Estimating parameters in Interpolation methods

MLE of N-gram models

• Unigram

$$p_{ml}(w_i) = \frac{c(w_i)}{\sum c(w_i)}$$

• Bigram

$$p_{ml}(w_i|w_{i-1}) = \frac{c(w_{i-1}, w_i)}{c(w_{i-1})}$$

• Trigram

$$p_{ml}(w_i|w_{i-2}, w_{i-1}) = \frac{c(w_{i-2}, w_{i-1}, w_i)}{c(w_{i-2}, w_{i-1})}$$

Problem with MLE

- Works well if test corpus is very similar to training, which is not generally the case.
- Sparsity Issue
 - OOV : Can be solved by having <UNK> category
 - Words are present in corpus but relevant counts are zero
 - Underestimation of such probabilities

Smoothing Techniques

Simplest Approach: Additive Smoothing

• Add-1 Smoothing

$$p_{mle}(w_i|w_{i-2}, w_{i-1}) = \frac{c(w_{i-2}, w_{i-1}, w_i) + 1}{c(w_{i-2}, w_{i-1}) + |\mathcal{V}|}$$

Generalized version

$$p_{mle}(w_i|w_{i-2}, w_{i-1}) = \frac{c(w_{i-2}, w_{i-1}, w_i) + \delta}{c(w_{i-2}, w_{i-1}) + \delta|\mathcal{V}|}$$

Simplest Approach: Additive Smoothing

- Few more concepts discussed in the class
 - Adjusted Count
 - Discount Ratio

What's wrong with additive smoothing

- Optional but Recommended Reading
 - Gale and Church, 1990, Estimation procedure for language context: poor estimates are worse than none. In COMPSTAT, Proceedings in Computational statistics
 - Gale and Church, 1994, *What's wrong with adding one?* Corpus-Based Research into Language.

Take the help of lower order models

- Bigram Example
 - $c(w_1, w_2) = 0 = c(w_1, w_2')$
 - $p_{add} (w_2 | w_1) = p_{add} (w_2' | w_1)$
 - Lets assume $p(w_2') < p(w_2)$
 - We should expect $p_{add} (w_2 | w_1) > p_{add} (w_2' | w_1)$

Take the help of lower order models

- Linear Interpolation Models
- Discounting Models

Linear Interpolation Model

• Bigram model $p(w_i | w_{i-1})$

$$p_{int}(w_i|w_{i-1}) = \lambda p_{mle}(w_i|w_{i-1}) + (1-\lambda)p_{mle}(w_i),$$
 Where $0 \le \lambda \le 1$

• Trigram model

$$p_{int}(w_i | w_{i-2}, w_{i-1}) \\ = \lambda_1 \times p_{mle}(w_i | w_{i-2}, w_{i-1}) + \lambda_2 \times p_{mle}(w_i | w_{i-1}) + \lambda_3 \times p_{mle}(w_i),$$

Linear Interpolation Model

Verify $p_{int}(w_i|w_{i-2}, w_{i-1})$ is probability distribution.

i.e., $\sum p_{int}(w_i | w_{i-2}, w_{i-1}) = 1$

Estimating λ values

- Use of validation or development or held-out data
- $c'(w_1, w_2, w_3) :=$ Number of occurrences of $w_1 w_2 w_3$ in the <u>validation</u> <u>data</u>
- Maximum likelihood estimation

$$L(\lambda_1, \lambda_2, \lambda_3) = \sum_{w_1, w_2, w_3} c'(w_1, w_2, w_3) \log p_{int}(w_3 | w_1, w_2)$$

s.t. constraints on λ values.

More on Smoothing Techniques

- Optional but Recommended Reading
 - An Empirical Study of Smoothing Techniques for Language Modeling, *S Chen, and J Goodman*, 1998.
- Generalized versions
 - Interpolation Techniques
 - Discounting Methods

References

- Chapter 3 [SLP, 3rd ed. Latest draft]
- Prof. Collins Lecture Notes on Language Modeling
 - http://www.cs.columbia.edu/~mcollins/lm-spring2013.pdf