CS565: Intelligent Systems and Interfaces

Language Modeling

Semester: Jan – May 2019

Ashish Anand

Associate Professor, Dept of CSE

IIT Guwahati

Announcements

- Scribe
 - Shubham Jindal, Saswata De: 29th Jan Lec

- Make-up Lecture
 - Thursday 31st Jan, 2-3 PM: Project Guideline: Administration and Themes

- Assignment 1 will be online today
 - Due Date: 10th February

Recap and Moving Forward

- Previously in the course $\textcircled{\odot}$
 - Working with corpus: Sentence and word segmentation
 - Working with corpus: word frequency distribution and related Laws
 - Finding Collocations
 - Words: Morphology
- Next
 - Language Modeling: Generative model of language

Objective

Understanding Language Model

• N-Gram Language Model

• Evaluating Language Model

Lets look at some examples

- Predicting next word
 - I am planning
 - Many applications including <u>augmentative communication</u>

- Speech Recognition
 - I saw <u>a van</u> vs eyes awe an

Example continued

- Spelling correction
 - Study was conducted <u>by</u> students vs study was conducted <u>be</u> students
 - <u>Their</u> are two exams for this course vs <u>There</u> are two exams for this course
- Machine Translation
 - I have asked him to do homework
 - मैंने उससे पूछा कि होमवर्क करने के लिए
 - मैंने उसे होमवर्क करने के लिए कहा

In each of the example, objective is either

• To find next probable word

• To find which sentence is more likely to be true

But it must be recognized that the notion "probability of a sentence" is an entirely useless one, under any known interpretation of this term. Noam Chomsky

Anytime a linguist leaves the group the recognition rate goes up. Fred Jelinek (then of the IBM speech group)

Language Models (LM)

Models assigning probabilities to a sequence of words

- P(I saw a van) > P(eyes awe an)
- P(मैंने उससे पूछा कि होमवर्क करने के लिए) < P(मैंने उसे होमवर्क करने के लिए कहा)

Defining LM Formally

- We consider a vocabulary, a finite set denoted as \mathcal{V} , and a function $P(w_1, w_2, w_3, \dots, w_n)$, such that
 - For any $\langle w_1, w_2, w_3, \dots, w_n \rangle \in \mathcal{V}^{\dagger}, p(w_1, w_2, w_3, \dots, w_n) \ge 0$

•
$$\Sigma p(w_1, w_2, w_3, ..., w_n) = 1,$$

where
$$\mathcal{V}^{\dagger}$$
: { $S = w_1 w_2 w_3 \dots w_n \mid w_i \in \mathcal{V}$ }.

Estimating $P(w_1, w_2, ..., w_n)$

Our task is to compute
P(I, am, fascinated, with, recent, advances, in, AI)

Chain Rule

Estimating $P(w_1, w_2, ..., w_n)$

Chain Rule

•
$$P(w_1, w_2, w_3, ..., w_n) = P(w_1) P(w_2|w_1) P(w_3|w_1, w_2) P(w_n|w_1, ..., w_{n-1})$$

Estimating $P(w_1, w_2, ..., w_n)$

Could we just count and divide?

 $P(eat|I want to) = \frac{count(I want to eat)}{count(I want to)}$

• What is the problem here?

Estimating $P(w_1, w_2, ..., w_n)$

- Too many possible sentences
- Data sparseness
- Poor <u>generalizability</u>

Markov Assumption

• Simplifying assumption:

 $P(eat | I want to) \sim P(eat | to)$

or

 $P(eat | I want to) \sim P(eat | want to)$

Markov Assumption

$$P(w_1, w_2, w_3, ..., w_n) \sim \prod_i P(w_i | w_{i-k}, ..., w_{i-1})$$

i.e., Each component in the product is getting approximated by Markov assumption

$$P(w_i|w_1, w_2, w_3, ..., w_{i-1}) \sim P(w_i|w_{i-k}, ..., w_{i-1})$$

N-gram Models

- Unigram: Simplest Model (does not depend on anything) $P(w_1, w_2, w_3, ..., w_n) \sim \prod_i P(w_i)$
- Bigram Model (1st Order Markov model) $P(w_1, w_2, w_3, ..., w_n) \sim \prod_i P(w_i | w_{i-1})$
- Trigram Model (2nd order Markov model)

$$P(w_1, w_2, w_3, ..., w_n) \sim \prod_i P(w_i | w_{i-2}, w_{i-1})$$

N-gram Model: Issue

• Long-distance dependencies

"The computer which I had just put into the lab on the fifth floor crashed"

Estimating the Probabilities

Data

- Training
- Development
- Test

Maximum Likelihood Estimate

• Unigram

$$P(w_i) = \frac{c(w_i)}{K}$$

K: Total number of **tokens** in training set

• Bigram

$$P(w_i | w_{i-1}) = \frac{c(w_{i-1}, w_i)}{c(w_{i-1})}$$

• N-Gram

$$P(w_n | w_{n-N+1}^{n-1}) = \frac{c(w_{n-N+1}^{n-1} | w_n)}{c(w_{n-N+1}^{n-1})}$$

Bigram Probabilities

eat on	.16	eat Thai	.03
eat some	.06	eat breakfast	.03
eat lunch	.06	eat in	.02
eat dinner	.05	eat Chinese	.02
eat at	.04	eat Mexican	.02
eat a	.04	eat tomorrow	.01
eat Indian	.04	eat dessert	.007
eat today	.03	eat British	.001

A fragment of bigram probabilities from the *Berkeley Restaurant Project* showing most likely word to follow *eat*

Source: Figure 6.2: Page 225, SLP

Computing probability of a sentence

<3> 1011.04	I would .29 I don't .08	want a .05 want some .04	to have .14 to spend .09		60 .15 .01
-------------	----------------------------	-----------------------------	-----------------------------	--	------------------

Figure 6.3 More fragments from the bigram grammar from the Berkeley Restaurant Project.

P (<s> I want to eat British food </s>) = P(I|<s>) P(want|I) P(to|want) P(eat|to) P(British|eat) P(food|British) P(</s>|food)

Language Model Evaluation

Two paradigms

Intrinsic evaluation

• Extrinsic evaluation

Intrinsic Evaluation: Perplexity

- Given a test data of *m* sentences: *s*₁, *s*₂,, *s*_m
- Probability of a sentence under this model p(s_i)
- Log-Probability of all sentences: $\log \prod p(s_i) = \sum \log p(s_i)$

Perplexity: Alternate definitions

- Perplexity = 2^{-1} , where I = $1/M(\sum \log p(s_i))$
- Perplexity = $P(s_1s_2....s_n)^{-(1/M)}$
- Smaller the value of perplexity, better the language model is.

Interpreting Perplexity

- Weighted average branching factor
- Branching factor: number of possible next words that can follow any word.

One specific example

- Training: 38 million words from *Wall Street Journals* [vocab size: 19,979]
- Test: 1.5 million words

	Unigram	Bigram	Trigram
Perplexity	962	170	109

Generalization

- 1 gram: Hill he late speaks; or! a more to leg less first you enter
- 2 gram: What means, sir. I confess she? then all sorts, he is trim, captain
- 3 gram: This shall forbid it should be branded, if renown made it empty
- 4 gram: It cannot be but so.

Source: SLP (3rd Ed.), Figure 4.3. Training data on Shakespeare's works. V = 29, 066.

Generalization

- 1 gram: Months the my and issue of year foreign
- 2 gram: Last December through the way to preserve the Hudson
- 3 gram: They also point to ninety nine point six billion dollars from two

Source: SLP (3rd ed.), Figure 4.4. Training data on 40 million words of Wall Street Journal

Unknown or OOV words

- Fix vocabulary and words within training data not appearing in vocabulary are mapped to <UNK>
- Less frequent words mapped to <UNK>

Sparsity

- Works well if test corpus is very similar to training, which is not generally the case.
- Training Set

..... denied the allegations..... denied the reports..... denied the claims..... denied the request

- Test Set
- denied the offer denied the loan P("offer" | denied the) = 0

References

- SLP (3rd Ed.), Chapter 3 (draft date: 23rd Sept, 2018)
- Collin's lecture-notes on Language Modeling