CS565: Intelligent Systems and Interfaces

Words: Finding Collocations
Semester: Jan - May 2019

Ashish Anand
Associate Professor, Dept of CSE
IIT Guwahati

Announcements

- Scribe for Next two lectures
- Vaibhav Pandey, Dhananjay, Susrita: $23^{\text {rd }}$ Lec
- Extra Class on this Thursday, 24 ${ }^{\text {th }}$ Jan at 2 PM

Recap

- Understand corpus data at word level
- Uneven Distribution with long tail
- Zipf's and Mandelbrot's Laws to describe this distribution
- Collocation
- What is it and its characteristics
- How to Find them
- Frequency based approach
- Frequency with linguistic knowledge in form of syntactic patterns

Objective

- Continuing with ways to find collocation
- Deal with collocation at a distance
- Making sure observation is not random
- Hypothesis Testing Methods

Finding Collocation

Pros and Cons of Frequency + Syntactic Pattern Filter

- Advantages
- Simple method
- Disadvantages
- Too much dependency on hand-designed filter
- High frequency can be random without any specific meaning
- Works well for fixed phrases but will not work for cases where variable number of words may exist between two words
- Example
- She knocked on his door
- They knocked at the door
- 100 women knocked on Donaldson's door
- a man knocked on the metal front door

Sliding window could be savior

Sentence:

man knocked on the front door
Bigrams:
man knocked man on

knocked on \begin{tabular}{l}
man the

knocked the

on the

\quad

knocked front knocked door

on front on door

the front

\quad

the door

front door
\end{tabular}

Four word collocational window to capture bigrams at a distance

Mean and Variance

- Can implicitly take care of varying distance issue
- Method
- Calculate mean of offsets (signed distance) between the two words.

She knocked on his door
They knocked at the door
100 women knocked on Donaldson's door
a man knocked on the metal front door

- Mean, $\bar{d}=1 / 4(3+3+5+5)$
[Donaldson's tokenized as : Donaldson, apostrophe, s]
- Variance, $s^{2}=\frac{\sum_{i=1}^{n}\left(d_{i}-\bar{d}\right)^{2}}{n-1}$

s	\bar{d}	Count	Word 1	Word 2
0.43	0.97	11657	New	York
0.48	1.83	24	previous	games
0.15	2.98	46	minus	points
0.49	3.87	131	hundreds	dollars
4.03	0.44	36	editorial	Atlanta
4.03	0.00	78	ring	New
3.96	0.19	119	point	hundredth
3.96	0.29	106	subscribers	by
1.07	1.45	80	strong	support
1.13	2.57	7	powerful	organizations
1.01	2.00	112	Richard	Nixon
1.05	0.00	10	Garrison	said

Table 5.5 Finding collocations based on mean and variance. Sample deviation s and sample mean \bar{d} of the distances between 12 word pairs.

Position of strong with respect to opposition ($\bar{d}=-1.15, s=0.67$).

Figure 5.2 Histograms of the position of strong relative to three words.

Issues with Mean \& Variance Approach

- Unable to differentiate with chance cases
- Why this is happening?
- High frequency of individual words, hence likely to co-occur together quite often

Hypothesis Testing: Mitigating the chance issue

- Objective: Whether the observation is significantly different than just being a random event
- Objective in our case: whether words occur together more frequently than they would have occurred together by chance
- Steps are
- Formulate Null Hypothesis, $\boldsymbol{H}_{\underline{0}}$ ́ model random event appropriately
- Decide Significance Level: Probability of rejecting $\underline{H}_{\underline{0}}$ when it is true
- Compute the probability p that the event (corresponding statistics) occurs if H_{0} is true.
- Reject null hypothesis if p is less than the significance level

Statistical Test: t-test

- Null Hypothesis: Sample is drawn from a normal distribution with mean μ
- $t=\frac{\bar{x}-\mu}{\sqrt{\frac{s^{2}}{n}}}$

Example: Study of men heights

Null Hypothesis, H_{0} : Sample is drawn from general population of men with mean heights $=158 \mathrm{~cm}$

Sample size, $N=200$; Observed/sample mean $=169 \mathrm{~cm}$; sample variance $=2600$
$t \approx 3.05$
Critical value of t-statistics $= \pm 2.83$

Give your verdict

Question: How to use t-test in this problem?

-What are my samples?

- What is sample size?
-What is sample mean?
-What is expected mean?

Deciding sample answers all questions

- Consider corpus : collection of n-grams
- Samples: Indicator random variable corresponds to the target n-gram.
- Sample size: \# of n-grams
- $x_{i} \sim$ Bernoulli (p)

Using t-test for finding collocations

- Text corpus as a sequence of N bigrams
- $P\left(w_{i}\right)=\#$ of occurrences of word $w_{i} /$ total \# of words [MLE]
- $H_{0}: P\left(w_{i}, w_{j}\right)=P\left(w_{i}\right) * P\left(w_{j}\right)$ [occurrence of the two words are independent]
- Under null hypothesis, process of random occurrence of the bigram is a Bernoulli Trial with $p=P\left(w_{j}, w_{j}\right)=P\left(w_{i}\right) * P\left(w_{j}\right)$
- Mean, $\mu=p ;$ variance $=p(1-p) \approx p$
- Calculate \bar{x} and std. dev.

References

- Chapter 5 [FSNLP]

