Probabilistic Context-Free Grammars (PCFGSs)

Michael Collins

1 Context-Free Grammars

1.1 Basic Definition
A context-free grammar (CFG) is a 4-tugle= (N, X, R, S) where:

e N is a finite set of non-terminal symbols.
e Y is afinite set of terminal symbols.

e Ris afinite set of rules of the forlY — Y1Y5...Y,,, whereX € N,n > 0,
andY; € (NUX)fori=1...n.

e S € N is adistinguished start symbol.

Figure 1 shows a very simple context-free grammar, for anfiexgg of English.
In this case the set of non-termindls specifies some basic syntactic categories:
for exampleS stands for “sentenceNP for “noun phrase” VP for “verb phrase”,
and so on. The sét contains the set of words in the vocabulary. The start symbol
in this grammar i$: as we will see, this specifies that every parse treestessits
root. Finally, we have context-free rules such as

S — NP VP

or
NN — man

The first rule specifies that an(sentence) can be composed ofi@¥ollowed by
aVP. The second rule specifies that ¥th (a singular noun) can be composed of
the wordman.

Note that the set of allowable rules, as defined above, i€ dqudad: we can
have any ruleX — Y;...Y, as long asX is a member ofV, and eachy; for

i =1...nisamember of eitheN or X. We can for example have “unary rules”,
wheren = 1, such as the following:

NN — man
S — VP

We can also have rules that have a mixture of terminal andi@oninal symbols
on the right-hand-side of the rule, for example

VP — John Vt Mary
NP — the NN

We can even have rules whete= 0, so that there are no symbols on the right-
hand-side of the rule. Examples are

VP — €
NP — ¢

Here we use to refer to the empty string. Intuitively, these latter sigpecify that
a particular non-terminal (e.giP), is allowed to have no words below it in a parse
tree.

1.2 (Left-most) Derivations

Given a context-free grammd#, a left-most derivation is a sequence of strings
s1...5, Where

e 51 = S. i.e.,s; consists of a single element, the start symbol.

e s, € ¥* i.e. s, is made up of terminal symbols only (we wri& to denote
the set of all possible strings made up of sequences of wakes trrom>:.)

e Eachs; fori = 2...n is derived froms;_; by picking the left-most non-
terminal X in s;_; and replacing it by somg where X — [is a rule in
R.

As one example, one left-most derivation under the grammégiire 1 is the
following:

e 51 =3S.

e 55 = NP VP. (We have taken the left-most non-terminalsin namelys,
and chosen the rule — NP VP, thereby replacing by NP followed byVp.)

2

N ={S, NP, VP, PP, DT, Vi, Vt, NN, IN
S =S
Y. = {sleeps, saw, man, woman, dog, telescope, the, with, in

R = Vi — sleeps
S — NP VP Vi — saw
VP — Vi NN — man
VP — Vt NP NN — woman
VP — VP PP NN — telescope
NP — DT NN NN — dog
NP — NP PP DT — the
PP — IN NP IN — with
IN — in

Figure 1. A simple context-free grammar. Note that the sehmi-terminals
N contains a basic set of syntactic categories: S=sentenBeyvarb phrase,
NP=noun phrase, PP=prepositional phrase, DT=determ¥ieintransitive verb,
Vi=transitive verb, NN=noun, IN=preposition. The setis the set of possible
words in the language.

e s3 = DT NN VP. (We have used the rulg? — DT NN to expand the
left-most non-terminal, namelyp.)

e s, = the NN VP. (We have used the rulel — the.)
e s5 = the man VP. (We have used the rudMN — man.)
e sg = the man Vi. (We have used the ruie® — Vi.)

e s; = the man sleeps. (We have used the ruiei — sleeps.)

It is very convenient to represent derivationgasse trees. For example, the above
derivation would be represented as the parse tree shownuie &y This parse tree
hass as its root, reflecting the fact that = S. We see the sequensig VP directly
belows, reflecting the fact that the was expanded using the ride— NP VP; we
see the sequen®T NN directly below theNP, reflecting the fact that theP was
expanded using the rul — DT NN; and so on.

A context-free grammafy will in general specify a set of possible left-most
derivations. Each left-most derivation will end in a stringe >*: we say that,,

3

S

T

NP VP
N |
DT NN Vi

the man sleeps

Figure 2: A derivation can be represented as a parse tree.

is theyield of the derivation. The set of possible derivations may beitefor an
infinite set (in fact the set of derivations for the grammadfiguire 1 is infinite).
The following definition is crucial:

e Astring s € ¥* is said to be in théanguage defined by the CFG, if there is
at least one derivation whose yieldsis

2 Ambiguity

Note that some stringsmay have more than one underlying derivation (i.e., more
than one derivation withy as the yield). In this case we say that the string is
ambiguous under the CFG.

As one example, see figure 3, which gives two parse trees éosttingthe
man saw the dog with the telescope, both of which are valid under the CFG given
in figure 1. This example is a case of prepositional phraselathient ambiguity:
the prepositional phras€K) with the telescope can modify eithethe dog, or saw
the dog. In the first parse tree shown in the figure, BEremodifiesthe dog, leading
to anNP the dog with the telescope: this parse tree corresponds to an interpretation
where the dog is holding the telescope. In the second pasettrePP modifies
the entirevP saw the dog: this parse tree corresponds to an interpretation where
the man is using the telescope to see the dog.

Ambiguity is an astonishingly severe problem for naturalglaages. When
researchers first started building reasonably large gramfoalanguages such as
English, they were surprised to see that sentences oftea kady large number
of possible parse trees: it is not uncommon for a moderaigttesentence (say 20
or 30 words in length) to have hundreds, thousands, or evenaiethousands of
possible parses.

As one example, in lecture we argued that the following sex@dias a surpris-
ingly large number of parse trees (I've found 14 in total):

N

NP VP

N

DT NN

| | Vit NP

the man | /\

AW NP PP

PN /\
DT NN N NP

| |
the dog with DT NN

tr|1e telescope
S
Np/\vp
N
DT NN /\
VP PP

the man Py
Vit NP IN NP

saw D|T N|N with DT NN
|

the dog the telescope

Figure 3: Two parse trees (derivations) for the sentéheenan saw the dog with
the telescope, under the CFG in figure 1.

She announced a program to promote safety in trucks and vans

Can you find the different parse trees for this example?

3 Probabilistic Context-Free Grammars (PCFGSs)

3.1 Basic Definitions

Given a context-free grammaét, we will use the following definitions:

e 7. isthe set of all possible left-most derivations (parsesreeder the gram-
mar G. When the grammat is clear from context we will often write this

as simply7 .

e For any derivatiort € 7¢, we writeyield(¢) to denote the string € ¥* that
is the yield oft (i.e.,yield(¢) is the sequence of words ih

e For a given sentencec ¥*, we write7¢(s) to refer to the set
{t .t € 1g,yield(t) = s}
That is,7¢(s) is the set of possible parse trees for

e We say that a senteneas ambiguous if it has more than one parse tree, i.e.,
Ta(s)| > 1.

e We say that a senteneds grammatical if it has at least one parse tree, i.e.,
‘T(;(S)‘ > 0.

The key idea in probabilistic context-free grammars is tizest our definition
to give aprobability distribution over possible derivations. That is, we will find a
way to define a distribution over parse treed,), such that for any € 7,

p(t) =0

and in addition such that

> pt)=1

teZa
At first glance this seems difficult: each parse-tré&ea complex structure, and the

set7q will most likely be infinite. However, we will see that theiea very simple
extension to context-free grammars that allows us to deffoeaion p(t).

Why is this a useful problem? A crucial idea is that once weshawunction
p(t), we have a ranking over possible parses for any sentencelén of probabil-
ity. In particular, given a sentenggwe can return

arg max t
gtETg(S)p()

as the output from our parser—this is the most likely parse fors under the
model. Thus if our distribution(t) is a good model for the probability of dif-
ferent parse trees in our language, we will have an effegtizg of dealing with
ambiguity.

This leaves us with the following questions:

e How do we define the functiop(t)?

e How do we learn the parameters of our modep©f) from training exam-
ples?

e For a given sentencg how do we find the most likely tree, namely

arg max p(t)?
gteTG(s)p()

This last problem will be referred to as tHecoding or parsing problem.
In the following sections we answer these questions thraiefiming proba-

bilistic context-free grammars (PCFGs), a natural generalization of context-free
grammars.

3.2 Definition of PCFGs
Probabilistic context-free grammars (PCFGs) are definddllasvs:
Definition 1 (PCFGs) A PCFG consists of:

1. Acontext-free grammar G = (N, %, S, R).

2. A parameter
q(a —)
for each rule « — (3 € R. The parameter q(a — [3) can be interpreted as
the conditional probabilty of choosing rule « — (in a left-most derivation,

given that the non-terminal being expanded is .. For any X € N, we have
the constraint

> qla—=p)=1

a—pfeR.a=X
In addition we have g(aw — 3) > 0 for any o — 3 € R.

7

Givenaparsetreet € 75 containing rulesay — S, a9 — Bo, ..., apn — On,
the probability of ¢ under the PCFG is

p(t) =[] ales — B)

i=1
O

Figure 4 shows an example PCFG, which has the same undecigirigxt-free
grammar as that shown in figure 1. The only addition to theimaigcontext-
free grammar is a parametgfee —) for each rulen — 5 € R. Each of these
parameters is constrained to be non-negative, and in adaii& have the constraint
that for any non-terminak € N,

> qla—p) =1
a—feER.a=X
This simply states that for any non-termingl the parameter values for all rules
with that non-terminal on the left-hand-side of the rule traism to one. We can
verify that this property holds for the PCFG in figure 4. Foamwple, we can verify
that this constraint holds foX = VP, because

> qla—pB) = q(VP— Vi) +q(VP — Vt NP) + g(VP — VP PP)
a—PER:a=VP
= 03+05+0.2
= 1.0

To calculate the probability of any parse tiggve simply multiply together the
g values for the context-free rules that it contains. For gdanif our parse tree
is

S
/\
NP VP
PN |
DT NN Vi

the dog sleeps
then we have

p(t) = ¢q(S— NP VP) x ¢(NP — DT NN) x ¢(DT — the) x q(NN — dog) x
q(VP — Vi) X ¢(Vi — sleeps)

Intuitively, PCFGs make the assumption that parse treegeaarerated stochas-
tically, according to the following process:

8

N ={S, NP, VP, PP, DT, Vi, Vt, NN, IN

Y. = {sleeps, saw, man, woman, dog, telescope, the, with, in

S =S

R,q=
S — NP VP|10
VP — Vi 0.3
VP — Vt NP |05
VP — VP PP |02
NP — DT NN | 0.8
NP — NP PP |0.2
PP — IN NP |10

Vi — sleeps 1.0
Vt — saw 1.0
NN — man 0.1
NN — woman | 0.1
NN — telescope 0.3
NN — dog 0.5
DT — the 1.0
IN — with 0.6
IN — in 0.4

Figure 4. A simple probabilistic context-free grammar (F3JFIn addition to
the set of rulesk, we show the parameter value for each rule.

q(VP — Vt NP) = 0.5 in this PCFG.

e Defines; = 5,7 =1.

e While s; contains at least one non-terminal:

— Find the left-most non-terminal ig;, call this X.

For example,

— Choose one of the rules of the fordd — (3 from the distribution

(X — B).

— Creates; 11 by replacing the left-mosk in s; by 3.
— Seti =i+ 1.

So we have simply added probabilities to each step in lefitrderivations. The
probability of an entire tree is the product of probabifititor these individual

choices.

3.3 Deriving a PCFG from a Corpus

Having defined PCFGs, the next question is the following: limmwve derive a
PCFG from a corpus? We will assume a set of training data,wikisimply a set

of parse tree$,, to, ..., t,. As before, we will writeyield(¢;) to be the yield for
thei'th parse tree in the sentence, iyeld(¢;) is thei'th sentence in the corpus.

Each parse treg is a sequence of context-free rules: we assume that every
parse tree in our corpus has the same symboét its root. We can then define a
PCFG(N, 3, S, R, q) as follows:

e N is the set of all non-terminals seen in the trees . ¢,,,.

Y is the set of all words seen in the tregs. . ¢,,,.

e The start symbokb is taken to bes.

e The set of rulesR is taken to be the set of all rules — 3 seen in the trees
t1...ty.

e The maximum-likelihood parameter estimates are

where Countoe — (3) is the number of times that the rule— 3 is seen in
the treeg; ... t,,, and Countx) is the number of times the non-terminal
is seen in the treefs . . . ¢,,.

For example, if the rul&#P — Vt NP is seen 105 times in our corpus, and the
non-terminalVvP is seen 1000 times, then

105

VP Vt NP) = ——
q(VP —) = 1000

3.4 Parsing with PCFGs

A crucial question is the following: given a sentencéow do we find the highest
scoring parse tree far, or more explicitly, how do we find
2
arg tlénﬁf)p(t) :
This section describes a dynamic programming algorittmenCKY algorithm, for
this problem.

The CKY algorithm we present applies to a restricted type©F8: a PCFG
where which is in Chomsky normal form (CNF). While the radtdn to grammars
in CNF might at first seem to be restrictive, it turns out nobéoa strong assump-
tion. It is possible to convert any PCFG into an equivaleaingnar in CNF: we
will look at this question more in the homewaorks.

In the next sections we first describe the idea of grammarsNR, @hen de-
scribe the CKY algorithm.

10

N ={S, NP, VP, PP, DT, Vi, Vt, NN, IN
S =S
Y. = {sleeps, saw, man, woman, dog, telescope, the, with, in

R,q= Vi — sleeps [1.0
S = NP VP10 \N/tN - fna;’:1 (1)'2
VP — Vt NP |08 NN — woman 0'1
VP — VP PP |02 '

NN — telescope 0.3
NP — DT NN |O0.8

NN — dog 0.5
NP — NP PP |0.2
PP N NP 10 DT — the 1.0

— . T
IN — with 0.6
IN — in 0.4

Figure 5: A simple probabilistic context-free grammar (R} Chomsky normal
form. Note that each rule in the grammar takes one of two forfis— Y; Y5
whereX € N,Y; e N, Y, € N;orX — Y whereX € N,Y € X.

3.4.1 Chomsky Normal Form

Definition 2 (Chomsky Normal Form) A context-free grammar G = (N, 3, R, S)
isin Chomsky formif each rule« — (§ € R takes one of the two following forms:

e X -YYowhereX € N,Y; € N,Ys € N.
e X - YwhereX € N,Y €.

Hence each rule in the grammar either consists of a non-terminal X rewriting as
exactly two non-terminal symboals, Y;Y5; or anon-terminal X rewriting as exactly
oneterminal symbol Y. [J

Figure 5 shows an example of a PCFG in Chomsky normal form.

3.4.2 Parsing using the CKY Algorithm

We now describe an algorithm for parsing with a PCFG in CNFe ifiput to the
algorithm isa PCFG&r = (IV, X, S, R, ¢) in Chomsky normal form, and a sentence

11

s =z ...xn, Wherez; is thei'th word in the sentence. The output of the algorithm
is
t
argtgggé)p()
The CKY algorithm is a dynamic-programming algorithm. Kegfiditions in
the algorithm are as follows:

e For a given sentence; ... x,, define7 (i, j, X) for any X € N, for any
(i,7) such thatl < ¢ < j < n, to be the set of all parse trees for words
x; ... x; such that non-terminaX is at the root of the tree.

e Define
5, X) = '
(i, 5, X) %g%kﬁ()

(we definer (i, j, X) = 0if 7 (4,4, X) is the empty set).

Thus (i, j, X) is the highest score for any parse tree that dominates words
x; ... x;, and has non-terminaX’ as its root. The score for a tregs again taken
to be the product of scores for the rules that it contains {f.the treet contains
rulesay — B1,a0 — Ba, ..., Qm — B, thenp(t) = :'ll q(ozi — ﬁz))

Note in particular, that

m(1,n,S) = argten%gﬁ)

because by definitiom(1,7,.5) is the score for the highest probability parse tree
spanning words; . . . x,, with S as its root.

The key observation in the CKY algorithm is that we can useanmsve defini-
tion of ther values, which allows a simple bottom-up dynamic prograngnailigo-
rithm. The algorithm is “bottom-up”, in the sense that ithitst fill in (4, j, X)
values for the cases wheje= i, then the cases wheje= i + 1, and so on.

The base case in the recursive definition is as follows: foi & 1...n, for
al X e N,

. _ X —x;) fX -z, €R
(0,6, X) = { 0 otherwise

This is a natural definition: the only way that we can have a tmoted in node
X spanning word; is if the rule X — z; is in the grammar, in which case the
tree has scorg(X — x;); otherwise, we set (7, i, X) = 0, reflecting the fact that
there are no trees rooted Jn spanning wordz;.

12

The recursive definition is as follows: for dll, j) such thatl < i < j < n,

forall X € N,
70,0, X) = max - (@(X = YZ) < x5, Y) xw(s+1,5,2) 1)
X—-YZeR,
s€{i..(G=1)}
The next section of this note gives justification for thisursive definition.

Figure 6 shows the final algorithm, based on these recursifiaitibns. The
algorithm fills in ther values bottom-up: first the(i, ¢, X') values, using the base
case in the recursion; then the values#¢i, j, X') such thatj = i + 1; then the
values forr (i, j, X') such thatj = i + 2; and so on.

Note that the algorithm also storbackpointer valuesbp(i, j, X) for all values
of (i, 7, X). These values record the rule — Y Z and the split-point leading to
the highest scoring parse tree. The backpointer values afloovery of the highest
scoring parse tree for the sentence.

3.4.3 Justification for the Algorithm

As an example of how the recursive rule in Eq. 2 is appliedsittar parsing the
sentence
x1 ...xg = the dog saw the man with the telescope

and consider the calculation af(3,8,VP). This will be the highest score for
any tree with rooVP, spanning wordss . . . xg = saw the man with the telescope.
Eq. 2 specifies that to calculate this value we takenilag over two choices: first,
a choice of a rul&P — Y Z which is in the set of rule®—note that there are two
such rulesyP — Vt NP andVP — VP PP. Second, a choice af€ {3,4,...7}.
Thus we will take the maximum value of the following terms:

q(VP — Vt NP) x 7(3,3,Vt) x 7(4,8,NP)
q(VP — VP PP) x 7(3,3,VP) x 7(4,8,PP)
q(VP — Vt NP) x 7(3,4,Vt) x 7(5,8,NP)
q(VP — VP PP) x 7(3,4,VP) x 7(5,8,PP)
q(VP — Vt NP) x 7(3,5,Vt) x 7(6,8,NP)
q(VP — VP PP) x 7(3,5,VP) x 7(6,8,PP)

q(VP — Vt NP) x 7(3,7,Vt) x 7(8,8,NP)
q(VP — VP PP) x 7(3,7,VP) x 7(8,8,PP)

13

Input: asentence =z ...x,, a PCFGG = (N,%, S, R, q).
Initialization:
Foralli € {1...n},forall X € N,

(i, X) = {g(X—»:nZ) if X -z, €R

otherwise

Algorithm:
e Fori=1...(n—1)

—Fori=1...(n—1)

* Setj =1+
x Forall X € N, calculate

w(i,j, X) = max (¢(X = YZ)xn(i,s,Y) x7(s+1,5,7))
— €R,
se{i..(j-1)}
and

bp(i,j, X) = arg max (X =YZ)xn(i,s,Y)x7w(s+1,7,2))
— eR,
sefi...(j—1)}
Output: Returnw(1,n,S) = max,c7(s) p(t), and backpointersp which allow recovery

of arg max;e7 () p(t)-

Figure 6: The CKY parsing algorithm.

14

How do we justify this recursive definition? The key obseomts that any
treet rooted inX, spanning words; . .. x;, must consist of the following:

A choice of some ruleX — Y Z € R, at the top of the tree.

A choice of some value € {i...j — 1}, which we will refer to as the “split
point” of the rule.

A choice of a tree rooted i, spanning words; . . . x, call this treet;
A choice of a tree rooted i, spanning words:,; . ..z, call this treet,.

We then have
p(t) =q(X =Y Z) xp(t1) X p(t2)

l.e., the probability for the tregis the product of three terms: the rule prob-
ability for the rule at the top of the tree, and probabiliiesthe sub-trees;
andts.

For example, consider the following tree, rooted®) spanning wordss . . . s
in our previous example:

VP

T

VP PP
/\ /\
Vit NP IN

NP
| N | N
saw DT NN with DT NN

the man the telescope

In this case we have the rul® — VP PP at the top of the tree; the choice of
split-point iss = 5; the tree dominating words; . . .z, rooted invPp, is

VP

/\
i NP

| PN
saw DT NN

the man

and the tree dominating words; . . . zs, rooted inPP, is

15

PP

/\
IN NP
with DT NN

the telescope
The second key observation is the following:

o If the highest scoring tree rooted in non-terminal X, and spanning words
x;...v5,usesrule X — Y Z and split point s, then its two subtrees must
be: 1) the highest scoring tree rooted in Y that spanns words x; . . . x5; 2)
the highest scoring tree rooted in Z that spanswords z,41 .. . x;.

The proof is by contradiction. If either condition (1) or chtion (2) was
not true, we could always find a higher scoring tree rooted jrspanning words
x; ... xj, by choosing a higher scoring subtree spanning woyds. z, Or .11 ... x;.

Now let’s look back at our recursive definition:

(i, X) = max (q(X —YZ)xa(i,s,Y)xn(s+1,5,2))
X —YZER,
se{i...(j—1)}
We see that it involves a search over rules possible riless YZ € R, and
possible split points. For each choice of rule and split point, we calculate

g X -YZ)xn(i,s,Y) xm(s+1,4,2)

which is the highest scoring tree rootedXny spanning words;; . . . x;, with this
choice of rule and split point. The definition uses the valu@ss,Y) andn(s +
1,7, Z), corresponding to the two highest scoring subtrees. Wetlakeax over
all possible choices of rules and split points.

3.4.4 The Inside Algorithm for Summing over Trees

We now describe a second, very similar algorithm, which stimasprobabilities
for all parse trees for a given sentence, thereby calcgldlie probability of the
sentence under the PCFG. The algorithm is cathednside algorithm.

The input to the algorithm is again a PCEG = (N, %, S, R, ¢) in Chom-
sky normal form, and a sentenee= x; ... x,, wherez; is thei'th word in the
sentence. The output of the algorithm is

pls)= > »(t)

teTa(s)

16

Herep(s) is the probability of the PCFG generating string
We define the following:

¢ As before, for a given sentenag . .. z,, define7 (i, j, X) forany X € N,
for any (7, 7) such thatl < i < j < n, to be the set of all parse trees for
wordsz; . .. z; such that non-terminaX is at the root of the tree.

e Define
(i, j, X) = Z p(t)

teT (1,j,X)

(we definer (i, j, X) = 0if 7 (4,4, X) is the empty set).

Note that we have simply replaced thex in the previous definition of, with
asum.
In particular, we have

n(l,n,8) = > p(t)=p(s)

teTa(s)

Thus by calculatingr(1, n, S), we have calculated the probabilitys).
We use a very similar recursive definition to before. Filsg base case is as
follows: forall: =1...n,forall X € N,

. B X —z;) fX -z, €R
(0,6, X) = { 0 otherwise

The recursive definition is as follows: for dll, j) such thatl < i < j < n,
forall X € N,

w05, X)= Y (@X =YZ)xn(i,sY)xa(s+1,5,2Z) (2)
X —YZER,
se{i...(j—1)}
Figure 7 shows the algorithm based on these recursive defigit The algo-
rithm is essentially identical to the CKY algorithm, but Withax replaced by a
sum in the recursive definition. Thevalues are again calculated bottom-up.

17

Input: asentence =z ...x,, a PCFGG = (N, %, S, R, q).
Initialization:
Foralli € {1...n},forall X € N,

m(i,i,X) =

X —x;) fX—>ux,€R
0 otherwise

Algorithm:

° FOlel...(n—l)

—Fori=1...(n—1)
x Setj =1+1
x Forall X € N, calculate

(6,5, X)= > (aX—=YZ)xw(i,sY)xn(s+1,5,2))
X—YZER,
sefi...(j—1)}

Output: Returnm(1,n,S) = >";c7 (5 p(t)

Figure 7: The inside algorithm.

18

