
Probabilistic Context-Free Grammars (PCFGs)

Michael Collins

1 Context-Free Grammars

1.1 Basic Definition

A context-free grammar (CFG) is a 4-tupleG = (N,Σ, R, S) where:

• N is a finite set of non-terminal symbols.

• Σ is a finite set of terminal symbols.

• R is a finite set of rules of the formX → Y1Y2 . . . Yn, whereX ∈ N , n ≥ 0,
andYi ∈ (N ∪ Σ) for i = 1 . . . n.

• S ∈ N is a distinguished start symbol.

Figure 1 shows a very simple context-free grammar, for a fragment of English.
In this case the set of non-terminalsN specifies some basic syntactic categories:
for exampleS stands for “sentence”,NP for “noun phrase”,VP for “verb phrase”,
and so on. The setΣ contains the set of words in the vocabulary. The start symbol
in this grammar isS: as we will see, this specifies that every parse tree hasS as its
root. Finally, we have context-free rules such as

S → NP VP

or
NN → man

The first rule specifies that anS (sentence) can be composed of anNP followed by
a VP. The second rule specifies that anNN (a singular noun) can be composed of
the wordman.

Note that the set of allowable rules, as defined above, is quite broad: we can
have any ruleX → Y1 . . . Yn as long asX is a member ofN , and eachYi for

1

i = 1 . . . n is a member of eitherN or Σ. We can for example have “unary rules”,
wheren = 1, such as the following:

NN → man

S → VP

We can also have rules that have a mixture of terminal and non-terminal symbols
on the right-hand-side of the rule, for example

VP → John Vt Mary

NP → the NN

We can even have rules wheren = 0, so that there are no symbols on the right-
hand-side of the rule. Examples are

VP → ǫ

NP → ǫ

Here we useǫ to refer to the empty string. Intuitively, these latter rules specify that
a particular non-terminal (e.g.,VP), is allowed to have no words below it in a parse
tree.

1.2 (Left-most) Derivations

Given a context-free grammarG, a left-most derivation is a sequence of strings
s1 . . . sn where

• s1 = S. i.e.,s1 consists of a single element, the start symbol.

• sn ∈ Σ∗, i.e. sn is made up of terminal symbols only (we writeΣ∗ to denote
the set of all possible strings made up of sequences of words taken fromΣ.)

• Eachsi for i = 2 . . . n is derived fromsi−1 by picking the left-most non-
terminalX in si−1 and replacing it by someβ whereX → β is a rule in
R.

As one example, one left-most derivation under the grammar in figure 1 is the
following:

• s1 = S.

• s2 = NP VP. (We have taken the left-most non-terminal ins1, namelyS,
and chosen the ruleS → NP VP, thereby replacingS by NP followed byVP.)

2

N = {S, NP, VP, PP, DT, Vi, Vt, NN, IN}
S = S
Σ = {sleeps, saw, man, woman, dog, telescope, the, with, in}

R =

S → NP VP
VP → Vi
VP → Vt NP
VP → VP PP
NP → DT NN
NP → NP PP
PP → IN NP

Vi → sleeps
Vt → saw
NN → man
NN → woman
NN → telescope
NN → dog
DT → the
IN → with
IN → in

Figure 1: A simple context-free grammar. Note that the set ofnon-terminals
N contains a basic set of syntactic categories: S=sentence, VP=verb phrase,
NP=noun phrase, PP=prepositional phrase, DT=determiner,Vi=intransitive verb,
Vt=transitive verb, NN=noun, IN=preposition. The setΣ is the set of possible
words in the language.

• s3 = DT NN VP. (We have used the ruleNP → DT NN to expand the
left-most non-terminal, namelyNP.)

• s4 = the NN VP. (We have used the ruleDT → the.)

• s5 = the man VP. (We have used the ruleNN → man.)

• s6 = the man Vi. (We have used the ruleVP → Vi.)

• s7 = the man sleeps. (We have used the ruleVi → sleeps.)

It is very convenient to represent derivations asparse trees. For example, the above
derivation would be represented as the parse tree shown in figure 2. This parse tree
hasS as its root, reflecting the fact thats1 = S. We see the sequenceNP VP directly
belowS, reflecting the fact that theS was expanded using the ruleS → NP VP; we
see the sequenceDT NN directly below theNP, reflecting the fact that theNP was
expanded using the ruleNP → DT NN; and so on.

A context-free grammarG will in general specify a set of possible left-most
derivations. Each left-most derivation will end in a stringsn ∈ Σ∗: we say thatsn

3

S

NP

DT

the

NN

man

VP

Vi

sleeps

Figure 2: A derivation can be represented as a parse tree.

is theyield of the derivation. The set of possible derivations may be a finite or an
infinite set (in fact the set of derivations for the grammar infigure 1 is infinite).

The following definition is crucial:

• A string s ∈ Σ∗ is said to be in thelanguage defined by the CFG, if there is
at least one derivation whose yield iss.

2 Ambiguity

Note that some stringss may have more than one underlying derivation (i.e., more
than one derivation withs as the yield). In this case we say that the string is
ambiguous under the CFG.

As one example, see figure 3, which gives two parse trees for the string the
man saw the dog with the telescope, both of which are valid under the CFG given
in figure 1. This example is a case of prepositional phrase attachment ambiguity:
the prepositional phrase (PP) with the telescope can modify eitherthe dog, or saw
the dog. In the first parse tree shown in the figure, thePP modifiesthe dog, leading
to anNP the dog with the telescope: this parse tree corresponds to an interpretation
where the dog is holding the telescope. In the second parse tree, thePP modifies
the entireVP saw the dog: this parse tree corresponds to an interpretation where
the man is using the telescope to see the dog.

Ambiguity is an astonishingly severe problem for natural languages. When
researchers first started building reasonably large grammars for languages such as
English, they were surprised to see that sentences often hada very large number
of possible parse trees: it is not uncommon for a moderate-length sentence (say 20
or 30 words in length) to have hundreds, thousands, or even tens of thousands of
possible parses.

As one example, in lecture we argued that the following sentence has a surpris-
ingly large number of parse trees (I’ve found 14 in total):

4

S

NP

DT

the

NN

man

VP

Vt

saw

NP

NP

DT

the

NN

dog

PP

IN

with

NP

DT

the

NN

telescope
S

NP

DT

the

NN

man

VP

VP

Vt

saw

NP

DT

the

NN

dog

PP

IN

with

NP

DT

the

NN

telescope

Figure 3: Two parse trees (derivations) for the sentencethe man saw the dog with
the telescope, under the CFG in figure 1.

5

She announced a program to promote safety in trucks and vans

Can you find the different parse trees for this example?

3 Probabilistic Context-Free Grammars (PCFGs)

3.1 Basic Definitions

Given a context-free grammarG, we will use the following definitions:

• TG is the set of all possible left-most derivations (parse trees) under the gram-
marG. When the grammarG is clear from context we will often write this
as simplyT .

• For any derivationt ∈ TG, we writeyield(t) to denote the strings ∈ Σ∗ that
is the yield oft (i.e.,yield(t) is the sequence of words int).

• For a given sentences ∈ Σ∗, we writeTG(s) to refer to the set

{t : t ∈ TG, yield(t) = s}

That is,TG(s) is the set of possible parse trees fors.

• We say that a sentences is ambiguous if it has more than one parse tree, i.e.,
|TG(s)| > 1.

• We say that a sentences is grammatical if it has at least one parse tree, i.e.,
|TG(s)| > 0.

The key idea in probabilistic context-free grammars is to extend our definition
to give aprobability distribution over possible derivations. That is, we will find a
way to define a distribution over parse trees,p(t), such that for anyt ∈ TG,

p(t) ≥ 0

and in addition such that
∑

t∈TG

p(t) = 1

At first glance this seems difficult: each parse-treet is a complex structure, and the
setTG will most likely be infinite. However, we will see that there is a very simple
extension to context-free grammars that allows us to define afunctionp(t).

6

Why is this a useful problem? A crucial idea is that once we have a function
p(t), we have a ranking over possible parses for any sentence in order of probabil-
ity. In particular, given a sentences, we can return

arg max
t∈TG(s)

p(t)

as the output from our parser—this is the most likely parse tree fors under the
model. Thus if our distributionp(t) is a good model for the probability of dif-
ferent parse trees in our language, we will have an effectiveway of dealing with
ambiguity.

This leaves us with the following questions:

• How do we define the functionp(t)?

• How do we learn the parameters of our model ofp(t) from training exam-
ples?

• For a given sentences, how do we find the most likely tree, namely

arg max
t∈TG(s)

p(t)?

This last problem will be referred to as thedecoding or parsing problem.

In the following sections we answer these questions throughdefiningproba-
bilistic context-free grammars (PCFGs), a natural generalization of context-free
grammars.

3.2 Definition of PCFGs

Probabilistic context-free grammars (PCFGs) are defined asfollows:

Definition 1 (PCFGs) A PCFG consists of:

1. A context-free grammar G = (N,Σ, S,R).

2. A parameter
q(α → β)

for each rule α → β ∈ R. The parameter q(α → β) can be interpreted as
the conditional probabilty of choosing rule α → β in a left-most derivation,
given that the non-terminal being expanded is α. For any X ∈ N , we have
the constraint

∑

α→β∈R:α=X

q(α → β) = 1

In addition we have q(α → β) ≥ 0 for any α → β ∈ R.

7

Given a parse-tree t ∈ TG containing rules α1 → β1, α2 → β2, . . . , αn → βn,
the probability of t under the PCFG is

p(t) =
n

∏

i=1

q(αi → βi)

Figure 4 shows an example PCFG, which has the same underlyingcontext-free
grammar as that shown in figure 1. The only addition to the original context-
free grammar is a parameterq(α → β) for each ruleα → β ∈ R. Each of these
parameters is constrained to be non-negative, and in addition we have the constraint
that for any non-terminalX ∈ N ,

∑

α→β∈R:α=X

q(α → β) = 1

This simply states that for any non-terminalX, the parameter values for all rules
with that non-terminal on the left-hand-side of the rule must sum to one. We can
verify that this property holds for the PCFG in figure 4. For example, we can verify
that this constraint holds forX = VP, because

∑

α→β∈R:α=VP

q(α → β) = q(VP → Vi) + q(VP → Vt NP) + q(VP → VP PP)

= 0.3 + 0.5 + 0.2

= 1.0

To calculate the probability of any parse treet, we simply multiply together the
q values for the context-free rules that it contains. For example, if our parse treet
is

S

NP

DT

the

NN

dog

VP

Vi

sleeps
then we have

p(t) = q(S → NP VP) × q(NP → DT NN) × q(DT → the) × q(NN → dog) ×

q(VP → Vi) × q(Vi → sleeps)

Intuitively, PCFGs make the assumption that parse trees aregenerated stochas-
tically, according to the following process:

8

N = {S, NP, VP, PP, DT, Vi, Vt, NN, IN}
S = S
Σ = {sleeps, saw, man, woman, dog, telescope, the, with, in}

R, q =

S → NP VP 1.0
VP → Vi 0.3
VP → Vt NP 0.5
VP → VP PP 0.2
NP → DT NN 0.8
NP → NP PP 0.2
PP → IN NP 1.0

Vi → sleeps 1.0
Vt → saw 1.0
NN → man 0.1
NN → woman 0.1
NN → telescope 0.3
NN → dog 0.5
DT → the 1.0
IN → with 0.6
IN → in 0.4

Figure 4: A simple probabilistic context-free grammar (PCFG). In addition to
the set of rulesR, we show the parameter value for each rule. For example,
q(VP → Vt NP) = 0.5 in this PCFG.

• Defines1 = S, i = 1.

• While si contains at least one non-terminal:

– Find the left-most non-terminal insi, call thisX.

– Choose one of the rules of the formX → β from the distribution
q(X → β).

– Createsi+1 by replacing the left-mostX in si by β.

– Seti = i + 1.

So we have simply added probabilities to each step in left-most derivations. The
probability of an entire tree is the product of probabilities for these individual
choices.

3.3 Deriving a PCFG from a Corpus

Having defined PCFGs, the next question is the following: howdo we derive a
PCFG from a corpus? We will assume a set of training data, which is simply a set

9

of parse treest1, t2, . . . , tm. As before, we will writeyield(ti) to be the yield for
thei’th parse tree in the sentence, i.e.,yield(ti) is thei’th sentence in the corpus.

Each parse treeti is a sequence of context-free rules: we assume that every
parse tree in our corpus has the same symbol,S, at its root. We can then define a
PCFG(N,Σ, S,R, q) as follows:

• N is the set of all non-terminals seen in the treest1 . . . tm.

• Σ is the set of all words seen in the treest1 . . . tm.

• The start symbolS is taken to beS.

• The set of rulesR is taken to be the set of all rulesα → β seen in the trees
t1 . . . tm.

• The maximum-likelihood parameter estimates are

qML(α → β) =
Count(α → β)

Count(α)

where Count(α → β) is the number of times that the ruleα → β is seen in
the treest1 . . . tm, and Count(α) is the number of times the non-terminalα

is seen in the treest1 . . . tm.

For example, if the ruleVP → Vt NP is seen 105 times in our corpus, and the
non-terminalVP is seen 1000 times, then

q(VP → Vt NP) =
105

1000

3.4 Parsing with PCFGs

A crucial question is the following: given a sentences, how do we find the highest
scoring parse tree fors, or more explicitly, how do we find

arg max
t∈T (s)

p(t) ?

This section describes a dynamic programming algorithm,the CKY algorithm, for
this problem.

The CKY algorithm we present applies to a restricted type of PCFG: a PCFG
where which is in Chomsky normal form (CNF). While the restriction to grammars
in CNF might at first seem to be restrictive, it turns out not tobe a strong assump-
tion. It is possible to convert any PCFG into an equivalent grammar in CNF: we
will look at this question more in the homeworks.

In the next sections we first describe the idea of grammars in CNF, then de-
scribe the CKY algorithm.

10

N = {S, NP, VP, PP, DT, Vi, Vt, NN, IN}
S = S
Σ = {sleeps, saw, man, woman, dog, telescope, the, with, in}

R, q =

S → NP VP 1.0
VP → Vt NP 0.8
VP → VP PP 0.2
NP → DT NN 0.8
NP → NP PP 0.2
PP → IN NP 1.0

Vi → sleeps 1.0
Vt → saw 1.0
NN → man 0.1
NN → woman 0.1
NN → telescope 0.3
NN → dog 0.5
DT → the 1.0
IN → with 0.6
IN → in 0.4

Figure 5: A simple probabilistic context-free grammar (PCFG) in Chomsky normal
form. Note that each rule in the grammar takes one of two forms: X → Y1 Y2

whereX ∈ N,Y1 ∈ N,Y2 ∈ N ; or X → Y whereX ∈ N , Y ∈ Σ.

3.4.1 Chomsky Normal Form

Definition 2 (Chomsky Normal Form) A context-free grammar G = (N,Σ, R, S)
is in Chomsky form if each rule α → β ∈ R takes one of the two following forms:

• X → Y1Y2 where X ∈ N,Y1 ∈ N,Y2 ∈ N .

• X → Y where X ∈ N , Y ∈ Σ.

Hence each rule in the grammar either consists of a non-terminal X rewriting as
exactly two non-terminal symbols, Y1Y2; or a non-terminal X rewriting as exactly
one terminal symbol Y .

Figure 5 shows an example of a PCFG in Chomsky normal form.

3.4.2 Parsing using the CKY Algorithm

We now describe an algorithm for parsing with a PCFG in CNF. The input to the
algorithm is a PCFGG = (N,Σ, S,R, q) in Chomsky normal form, and a sentence

11

s = x1 . . . xn, wherexi is thei’th word in the sentence. The output of the algorithm
is

arg max
t∈TG(s)

p(t)

The CKY algorithm is a dynamic-programming algorithm. Key definitions in
the algorithm are as follows:

• For a given sentencex1 . . . xn, defineT (i, j,X) for any X ∈ N , for any
(i, j) such that1 ≤ i ≤ j ≤ n, to be the set of all parse trees for words
xi . . . xj such that non-terminalX is at the root of the tree.

• Define
π(i, j,X) = max

t∈T (i,j,X)
p(t)

(we defineπ(i, j,X) = 0 if T (i, j,X) is the empty set).

Thusπ(i, j,X) is the highest score for any parse tree that dominates words
xi . . . xj, and has non-terminalX as its root. The score for a treet is again taken
to be the product of scores for the rules that it contains (i.e. if the treet contains
rulesα1 → β1, α2 → β2, . . . , αm → βm, thenp(t) =

∏m
i=1 q(αi → βi)).

Note in particular, that

π(1, n, S) = arg max
t∈TG(s)

because by definitionπ(1, n, S) is the score for the highest probability parse tree
spanning wordsx1 . . . xn, with S as its root.

The key observation in the CKY algorithm is that we can use a recursive defini-
tion of theπ values, which allows a simple bottom-up dynamic programming algo-
rithm. The algorithm is “bottom-up”, in the sense that it will first fill in π(i, j,X)
values for the cases wherej = i, then the cases wherej = i + 1, and so on.

The base case in the recursive definition is as follows: for all i = 1 . . . n, for
all X ∈ N ,

π(i, i,X) =

{

q(X → xi) if X → xi ∈ R

0 otherwise

This is a natural definition: the only way that we can have a tree rooted in node
X spanning wordxi is if the ruleX → xi is in the grammar, in which case the
tree has scoreq(X → xi); otherwise, we setπ(i, i,X) = 0, reflecting the fact that
there are no trees rooted inX spanning wordxi.

12

The recursive definition is as follows: for all(i, j) such that1 ≤ i < j ≤ n,
for all X ∈ N ,

π(i, j,X) = max
X→Y Z∈R,

s∈{i...(j−1)}

(q(X → Y Z) × π(i, s, Y) × π(s + 1, j, Z)) (1)

The next section of this note gives justification for this recursive definition.
Figure 6 shows the final algorithm, based on these recursive definitions. The

algorithm fills in theπ values bottom-up: first theπ(i, i,X) values, using the base
case in the recursion; then the values forπ(i, j,X) such thatj = i + 1; then the
values forπ(i, j,X) such thatj = i + 2; and so on.

Note that the algorithm also storesbackpointer valuesbp(i, j,X) for all values
of (i, j,X). These values record the ruleX → Y Z and the split-points leading to
the highest scoring parse tree. The backpointer values allow recovery of the highest
scoring parse tree for the sentence.

3.4.3 Justification for the Algorithm

As an example of how the recursive rule in Eq. 2 is applied, consider parsing the
sentence

x1 . . . x8 = the dog saw the man with the telescope

and consider the calculation ofπ(3, 8, VP). This will be the highest score for
any tree with rootVP, spanning wordsx3 . . . x8 = saw the man with the telescope.
Eq. 2 specifies that to calculate this value we take themax over two choices: first,
a choice of a ruleVP → Y Z which is in the set of rulesR—note that there are two
such rules,VP → Vt NP andVP → VP PP. Second, a choice ofs ∈ {3, 4, . . . 7}.
Thus we will take the maximum value of the following terms:

q(VP → Vt NP) × π(3, 3, Vt) × π(4, 8, NP)

q(VP → VP PP) × π(3, 3, VP) × π(4, 8, PP)

q(VP → Vt NP) × π(3, 4, Vt) × π(5, 8, NP)

q(VP → VP PP) × π(3, 4, VP) × π(5, 8, PP)

q(VP → Vt NP) × π(3, 5, Vt) × π(6, 8, NP)

q(VP → VP PP) × π(3, 5, VP) × π(6, 8, PP)

. . .

q(VP → Vt NP) × π(3, 7, Vt) × π(8, 8, NP)

q(VP → VP PP) × π(3, 7, VP) × π(8, 8, PP)

13

Input: a sentences = x1 . . . xn, a PCFGG = (N,Σ, S,R, q).
Initialization:
For all i ∈ {1 . . . n}, for all X ∈ N ,

π(i, i,X) =

{

q(X → xi) if X → xi ∈ R

0 otherwise

Algorithm:

• For l = 1 . . . (n − 1)

– For i = 1 . . . (n − l)

∗ Setj = i + l

∗ For allX ∈ N , calculate

π(i, j,X) = max
X→Y Z∈R,

s∈{i...(j−1)}

(q(X → Y Z) × π(i, s, Y) × π(s + 1, j, Z))

and

bp(i, j,X) = arg max
X→Y Z∈R,

s∈{i...(j−1)}

(q(X → Y Z) × π(i, s, Y) × π(s + 1, j, Z))

Output: Returnπ(1, n, S) = maxt∈T (s) p(t), and backpointersbp which allow recovery
of arg maxt∈T (s) p(t).

Figure 6: The CKY parsing algorithm.

14

How do we justify this recursive definition? The key observation is that any
treet rooted inX, spanning wordsxi . . . xj, must consist of the following:

• A choice of some ruleX → Y Z ∈ R, at the top of the tree.

• A choice of some values ∈ {i . . . j − 1}, which we will refer to as the “split
point” of the rule.

• A choice of a tree rooted inY , spanning wordsxi . . . xs, call this treet1

• A choice of a tree rooted inZ, spanning wordsxs+1 . . . xj , call this treet2.

• We then have
p(t) = q(X → Y Z) × p(t1) × p(t2)

I.e., the probability for the treet is the product of three terms: the rule prob-
ability for the rule at the top of the tree, and probabilitiesfor the sub-treest1
andt2.

For example, consider the following tree, rooted inVP, spanning wordsx3 . . . x8

in our previous example:
VP

VP

Vt

saw

NP

DT

the

NN

man

PP

IN

with

NP

DT

the

NN

telescope
In this case we have the ruleVP → VP PP at the top of the tree; the choice of

split-point iss = 5; the tree dominating wordsx3 . . . xs, rooted inVP, is
VP

Vt

saw

NP

DT

the

NN

man
and the tree dominating wordsxs+1 . . . x8, rooted inPP, is

15

PP

IN

with

NP

DT

the

NN

telescope
The second key observation is the following:

• If the highest scoring tree rooted in non-terminal X, and spanning words
xi . . . xj , uses rule X → Y Z and split point s, then its two subtrees must
be: 1) the highest scoring tree rooted in Y that spanns words xi . . . xs; 2)
the highest scoring tree rooted in Z that spans words xs+1 . . . xj .

The proof is by contradiction. If either condition (1) or condition (2) was
not true, we could always find a higher scoring tree rooted inX, spanning words
xi . . . xj, by choosing a higher scoring subtree spanning wordsxi . . . xs orxs+1 . . . xj.

Now let’s look back at our recursive definition:

π(i, j,X) = max
X→Y Z∈R,

s∈{i...(j−1)}

(q(X → Y Z) × π(i, s, Y) × π(s + 1, j, Z))

We see that it involves a search over rules possible rulesX → Y Z ∈ R, and
possible split pointss. For each choice of rule and split point, we calculate

q(X → Y Z) × π(i, s, Y) × π(s + 1, j, Z)

which is the highest scoring tree rooted inX, spanning wordsxi . . . xj , with this
choice of rule and split point. The definition uses the valuesπ(i, s, Y) andπ(s +
1, j, Z), corresponding to the two highest scoring subtrees. We takethemax over
all possible choices of rules and split points.

3.4.4 The Inside Algorithm for Summing over Trees

We now describe a second, very similar algorithm, which sumsthe probabilities
for all parse trees for a given sentence, thereby calculating the probability of the
sentence under the PCFG. The algorithm is calledthe inside algorithm.

The input to the algorithm is again a PCFGG = (N,Σ, S,R, q) in Chom-
sky normal form, and a sentences = x1 . . . xn, wherexi is thei’th word in the
sentence. The output of the algorithm is

p(s) =
∑

t∈TG(s)

p(t)

16

Herep(s) is the probability of the PCFG generating strings.
We define the following:

• As before, for a given sentencex1 . . . xn, defineT (i, j,X) for anyX ∈ N ,
for any (i, j) such that1 ≤ i ≤ j ≤ n, to be the set of all parse trees for
wordsxi . . . xj such that non-terminalX is at the root of the tree.

• Define
π(i, j,X) =

∑

t∈T (i,j,X)

p(t)

(we defineπ(i, j,X) = 0 if T (i, j,X) is the empty set).

Note that we have simply replaced themax in the previous definition ofπ, with
a sum.

In particular, we have

π(1, n, S) =
∑

t∈TG(s)

p(t) = p(s)

Thus by calculatingπ(1, n, S), we have calculated the probabilityp(s).
We use a very similar recursive definition to before. First, the base case is as

follows: for all i = 1 . . . n, for all X ∈ N ,

π(i, i,X) =

{

q(X → xi) if X → xi ∈ R

0 otherwise

The recursive definition is as follows: for all(i, j) such that1 ≤ i < j ≤ n,
for all X ∈ N ,

π(i, j,X) =
∑

X→Y Z∈R,

s∈{i...(j−1)}

(q(X → Y Z) × π(i, s, Y) × π(s + 1, j, Z)) (2)

Figure 7 shows the algorithm based on these recursive definitions. The algo-
rithm is essentially identical to the CKY algorithm, but with max replaced by a
sum in the recursive definition. Theπ values are again calculated bottom-up.

17

Input: a sentences = x1 . . . xn, a PCFGG = (N,Σ, S,R, q).
Initialization:
For all i ∈ {1 . . . n}, for all X ∈ N ,

π(i, i,X) =

{

q(X → xi) if X → xi ∈ R

0 otherwise

Algorithm:

• For l = 1 . . . (n − 1)

– For i = 1 . . . (n − l)

∗ Setj = i + l

∗ For allX ∈ N , calculate

π(i, j,X) =
∑

X→Y Z∈R,

s∈{i...(j−1)}

(q(X → Y Z) × π(i, s, Y) × π(s + 1, j, Z))

Output: Returnπ(1, n, S) =
∑

t∈T (s) p(t)

Figure 7: The inside algorithm.

18

