
Chapter 8

MEMMs (Log-Linear Tagging
Models)

8.1 Introduction

In this chapter we return to the problem of tagging. We previously described hidden
Markov models (HMMs) for tagging problems. This chapter describes a powerful
alternative to HMMs, log-linear tagging models, which build directly on ideas
from log-linear models. A key advantage of log-linear tagging models is that they
allow highly flexible representations, allowing features to be easily integrated in
the model.

Log-linear tagging models are sometimes referred to as “maximum entropy
Markov models (MEMMs)”.1 We will use the terms “MEMM” and “log-linear
tagging model” interchangeably in this chapter. The name MEMM was first intro-
duced by McCallum et al. (2000).

Log-linear tagging models are conditional tagging models. Recall that a gen-
erative tagging model defines a joint distribution p(x1 . . . xn, y1 . . . yn) over sen-
tences x1 . . . xn paired with tag sequences y1 . . . yn. In contrast, a conditional
tagging model defines a conditional distribution

p(y1 . . . yn|x1 . . . xn)

corresponding to the probability of the tag sequence y1 . . . yn conditioned on the
input sentence x1 . . . xn. We give the following definition:

1This name is used because 1) log-linear models are also referred to as maximum entropy models,
as it can be shown in the unregularized case that the maximum likelihood estimates maximize an
entropic measure subject to certain linear constraints; 2) as we will see shortly, MEMMs make a
Markov assumption that is closely related to the Markov assumption used in HMMs.

1

2 CHAPTER 8. MEMMS (LOG-LINEAR TAGGING MODELS)

Definition 1 (Conditional Tagging Models) A conditional tagging model consists
of:

• A set of words V (this set may be finite, countably infinite, or even uncount-
ably infinite).

• A finite set of tags K.

• A function p(y1 . . . yn|x1 . . . xn) such that:

1. For any 〈x1 . . . xn, y1 . . . yn〉 ∈ S,

p(y1 . . . yn|x1 . . . xn) ≥ 0

where S is the set of all sequence/tag-sequence pairs 〈x1 . . . xn, y1 . . . yn〉
such that n ≥ 1, xi ∈ V for i = 1 . . . n, and yi ∈ K for i = 1 . . . n.

2. For any x1 . . . xn such that n ≥ 1 and xi ∈ V for i = 1 . . . n,∑
y1...yn∈Y(n)

p(y1 . . . yn|x1 . . . xn) = 1

where Y(n) is the set of all tag sequences y1 . . . yn such that yi ∈ K
for i = 1 . . . n.

Given a conditional tagging model, the function from sentences x1 . . . xn to tag
sequences y1 . . . yn is defined as

f(x1 . . . xn) = arg max
y1...yn∈Y(n)

p(y1 . . . yn|x1 . . . xn)

Thus for any input x1 . . . xn, we take the highest probability tag sequence as the
output from the model.

We are left with the following three questions:

• How we define a conditional tagging model p(y1 . . . yn|x1 . . . xn)?

• How do we estimate the parameters of the model from training examples?

• How do we efficiently find

arg max
y1...yn∈Y(n)

p(y1 . . . yn|x1 . . . xn)

for any input x1 . . . xn?

8.2. TRIGRAM MEMMS 3

The remainder of this chapter describes how MEMMs give a solution to these
questions. In brief, a log-linear model is used to define a conditional tagging model.
The parameters of the model can be estimated using standard methods for param-
eter estimation in log-linear models. MEMMs make a Markov independence as-
sumption that is closely related to the Markov independence assumption in HMMs,
and that allows the argmax above to be computed efficiently using dynamic pro-
gramming.

8.2 Trigram MEMMs

This section describes the model form for MEMMs. We focus on trigram MEMMs,
which make a second order Markov assumption, where each tag depends on the
previous two tags. The generalization to other Markov orders, for example first-
order (bigram) or third-order (four-gram) MEMMs, is straightforward.

Our task is to model the conditional distribution

P (Y1 = y1 . . . Yn = yn|X1 = x1 . . . Xn = xn)

for any input sequence x1 . . . xn paired with a tag sequence y1 . . . yn.
We first use the following decomposition:

P (Y1 = y1 . . . Yn = yn|X1 = x1 . . . Xn = xn)

=
n∏
i=1

P (Yi = yi|X1 = x1 . . . Xn = xn, Y1 = y1 . . . Yi−1 = yi−1)

=
n∏
i=1

P (Yi = yi|X1 = x1 . . . Xn = xn, Yi−2 = yi−2, Yi−1 = yi−1)

The first equality is exact, by the chain rule of probabilities. The second equal-
ity makes use of a trigram independence assumption, namely that for any i ∈
{1 . . . n},

P (Yi = yi|X1 = x1 . . . Xn = xn, Y1 = y1 . . . Yi−1 = yi−1)

= P (Yi = yi|X1 = x1 . . . Xn = xn, Yi−2 = yi−2, Yi−1 = yi−1)

Here we assume that y−1 = y0 = *, where * is a special symbol in the model
denoting the start of a sequence.

Thus we assume that the random variable Yi is independent of the values for
Y1 . . . Yi−3, once we condition on the entire input sequenceX1 . . . Xn, and the pre-
vious two tags Yi−2 and Yi−1. This is a trigram independence assumption, where
each tag depends only on the previous two tags. We will see that this independence

4 CHAPTER 8. MEMMS (LOG-LINEAR TAGGING MODELS)

assumption allows us to use dynamic programming to efficiently find the highest
probability tag sequence for any input sentence x1 . . . xn.

Note that there is some resemblance to the independence assumption made in
trigram HMMs, namely that

P (Yi = yi|Y1 = y1 . . . Yi−1 = yi−1)

= P (Yi = yi|Yi−2 = yi−2, Yi−1 = yi−1)

The key difference is that we now condition on the entire input sequence x1 . . . xn,
in addition to the previous two tags yi−2 and yi−1.

The final step is to use a log-linear model to estimate the probability

P (Yi = yi|X1 = x1 . . . Xn = xn, Yi−2 = yi−2, Yi−1 = yi−1)

For any pair of sequences x1 . . . xn and y1 . . . yn, we define the i’th “history” hi to
be the four-tuple

hi = 〈yi−2, yi−1, x1 . . . xn, i〉

Thus hi captures the conditioning information for tag yi in the sequence, in addi-
tion to the position i in the sequence. We assume that we have a feature-vector
representation f(hi, y) ∈ Rd for any history hi paired with any tag y ∈ K. The
feature vector could potentially take into account any information in the history hi
and the tag y. As one example, we might have features

f1(hi, y) =

{
1 if xi = the and y = DT
0 otherwise

f2(hi, y) =

{
1 if yi−1 = V and y = DT
0 otherwise

Section 8.3 describes a much more complete set of example features.
Finally, we assume a parameter vector θ ∈ Rd, and that

P (Yi = yi|X1 = x1 . . . Xn = xn, Yi−2 = yi−2, Yi−1 = yi−1)

=
exp (θ · f(hi, yi))∑
y∈K exp (θ · f(hi, y))

Putting this all together gives the following:

Definition 2 (Trigram MEMMs) A trigram MEMM consists of:

8.3. FEATURES IN TRIGRAM MEMMS 5

• A set of words V (this set may be finite, countably infinite, or even uncount-
ably infinite).

• A finite set of tags K.

• Given V and K, define H to be the set of all possible histories. The set
H contains all four-tuples of the form 〈y−2, y−1, x1 . . . xn, i〉, where y−2 ∈
K ∪ {*}, y−1 ∈ K ∪ {*}, n ≥ 1, xi ∈ V for i = 1 . . . n, i ∈ {1 . . . n}. Here
* is a special “start” symbol.

• An integer d specifying the number of features in the model.

• A function f : H×K → Rd specifying the features in the model.

• A parameter vector θ ∈ Rd.

Given these components we define the conditional tagging model

p(y1 . . . yn|x1 . . . xn) =
n∏
i=1

p(yi|hi; θ)

where hi = 〈yi−2, yi−1, x1 . . . xn, i〉, and

p(yi|hi; θ) =
exp (θ · f(hi, yi))∑
y∈K exp (θ · f(hi, y))

At this point there are a number of questions. How do we define the feature
vectors f(hi, y)? How do we learn the parameters θ from training data? How do
we find the highest probability tag sequence

arg max
y1...yn∈Y(n)

p(y1 . . . yn|x1 . . . xn)

for an input sequence x1 . . . xn? The following sections answer these questions.

8.3 Features in Trigram MEMMs

Recall that the feature vector definition in a trigram MEMM is a function f(h, y) ∈
Rd where h = 〈y−2, y−1, x1 . . . xn, i〉 is a history, y ∈ K is a tag, and d is an
integer specifying the number of features in the model. Each feature fj(h, y) for
j ∈ {1 . . . d} can potentially be sensitive to any information in the history h in

6 CHAPTER 8. MEMMS (LOG-LINEAR TAGGING MODELS)

conjunction with the tag y. This will lead to a great deal of flexibility in the model.
This is the primary advantage of trigram MEMMs over trigram HMMs for tagging:
a much richer set of features can be employed for the tagging task.

In this section we give an example of how features can be defined for the
part-of-speech (POS) tagging problem. The features we describe are taken from
Ratnaparkhi (1996); Ratnaparkhi’s experiments show that they give competitive
performance on the POS tagging problem for English. Throughout this section we
assume that the history h is a four-tuple 〈y−2, y−1, x1 . . . xn, i〉. The features are
as follows:

Word/tag features One example word/tag feature is the following:

f100(h, y) =

{
1 if xi is base and y = VB
0 otherwise

This feature is sensitive to the word being tagged, xi, and the proposed tag for that
word, y. In practice we would introduce features of this form for a very large set of
word/tag pairs, in addition to the pair base/VB. For example, we could introduce
features of this form for all word/tag pairs seen in training data.

This class of feature allows the model to capture the tendency for particular
words to take particular parts of speech. In this sense it plays an analogous role to
the emission parameters e(x|y) in a trigram HMM. For example, given the defini-
tion of f100 given above, a large positive value for θ100 will indicate that base is
very likely to be tagged as a VB; conversely a highly negative value will indicate
that this particular word/tag pairing is unlikely.

Prefix and Suffix features An example of a suffix feature is as follows:

f101(h, y) =

{
1 if xi ends in ing and y = VBG
0 otherwise

This feature is sensitive to the suffix of the word being tagged, xi, and the proposed
tag y. In practice we would introduce a large number of features of this form. For
example, in Ratnaparkhi’s POS tagger, all suffixes seen in training data up to four
letters in length were introduced as features (in combination with all possible tags).

An example of a prefix feature is as follows:

f102(h, y) =

{
1 if xi starts with pre and y = NN
0 otherwise

8.3. FEATURES IN TRIGRAM MEMMS 7

Again, a large number of prefix features would be used. Ratnaparkhi’s POS tagger
employs features for all prefixes up to length four seen in training data.

Prefix and suffix features are very useful for POS tagging and other tasks in
English and many other languages. For example, the suffix ing is frequently seen
with the tag VBG in the Penn treebank, which is the tag used for gerunds; there are
many other examples.

Crucially, it is very straightforward to introduce prefix and suffix features to the
model. This is in contrast with trigram HMMs for tagging, where we used the idea
of mapping low-frequency words to “pseudo-words” capturing spelling features.
The integration of spelling features—for example prefix and suffix features—in
log-linear models is much less ad-hoc than the method we described for HMMs.
Spelling features are in practice very useful when tagging words in test data that
are infrequent or not seen at all in training data.

Trigram, Bigram and Unigram Tag features An example of a trigram tag fea-
ture is as follows:

f103(h, y) =

{
1 if 〈y−2, y−1, y〉 = 〈DT, JJ, VB〉
0 otherwise

This feature, in combination with the associated parameter θ103, plays an analogous
role to the q(VB|DT, JJ) parameter in a trigram HMM, allowing the model to learn
whether the tag trigram 〈DT, JJ, VB〉 is likely or unlikely. Features of this form are
introduced for a large number of tag trigrams, for example all tag trigrams seen in
training data.

The following two features are examples of bigram and unigram tag features:

f104(h, y) =

{
1 if 〈y−1, y〉 = 〈JJ, VB〉
0 otherwise

f105(h, y) =

{
1 if 〈y〉 = 〈VB〉
0 otherwise

The first feature allows the model to learn whether the tag bigram JJ VB is likely
or unlikely; the second feature allows the model to learn whether the tag VB is
likely or unlikely. Again, a large number of bigram and unigram tag features are
typically introduced in the model.

Bigram and unigram features may at first glance seem redundant, given the ob-
vious overlap with trigram features. For example, it might seem that features f104
and f105 are subsumed by feature f103. Specifically, given parameters θ103, θ104
and θ105 we can redefine θ103 to be equal to θ103+θ104+θ105, and θ104 = θ105 = 0,

8 CHAPTER 8. MEMMS (LOG-LINEAR TAGGING MODELS)

giving exactly the same distribution p(y|x; θ) for the two parameter settings.2 Thus
features f104 and f105 can apparently be eliminated. However, when used in con-
junction with regularized approaches to parameter estimation, the bigram and un-
igram features play an important role that is analogous to the use of “backed-off”
estimates qML(VB|JJ) and qML(VB) in the smoothed estimation techniques seen
previously in the class. Roughly speaking, with regularization, if the trigram in
feature f103 is infrequent, then the value for θ103 will not grow too large in magni-
tude, and the parameter values θ104 and θ105, which are estimated based on more
examples, will play a more important role.

Other Contextual Features Ratnaparkhi also used features which consider the
word before or after xi, in conjunction with the proposed tag. Example features
are as follows:

f106(h, y) =

{
1 if previous word xi−1 = the and y = VB
0 otherwise

f107(h, y) =

{
1 if next word xi+1 = the and y = VB
0 otherwise

Again, many such features would be introduced. These features add additional
context to the model, introducing dependencies between xi−1 or xi+1 and the pro-
posed tag. Note again that it is not at all obvious how to introduce contextual
features of this form to trigram HMMs.

Other Features We have described the main features in Ratnaparkhi’s model.
Additional features that he includes are: 1) spelling features which consider whether
the word xi being tagged contains a number, contains a hyphen, or contains an
upper-case letter; 2) contextual features that consider the word at xi−2 and xi+2 in
conjunction with the current tag y.

8.4 Parameter Estimation in Trigram MEMMs

Parameter estimation in trigram MEMMs can be performed using the parameter
estimation methods for log-linear models described in the previous chapter. The
training data is a set of m examples (x(k), y(k)) for k = 1 . . .m, where each x(k) is
a sequence of words x(k)1 . . . x

(k)
nk , and each y(k) is a sequence of tags y(k)1 . . . y

(k)
nk .

2To be precise, this argument is correct in the case where for every unigram and bigram feature
there is at least one trigram feature that subsumes it. The reassignment of parameter values would be
applied to all trigrams.

8.5. DECODING WITH MEMMS: ANOTHER APPLICATION OF THE VITERBI ALGORITHM9

Here nk is the length of the k’th sentence or tag sequence. For any k ∈ {1 . . .m},
i ∈ {1 . . . nk}, define the history h(k)i to be equal to 〈y(k)i−2, y

(k)
i−1, x

(k)
1 . . . x

(k)
nk , i〉.

We assume that we have a feature vector definition f(h, y) ∈ Rd for some integer
d, and hence that

p(y
(k)
i |h

(k)
i ; θ) =

exp
(
θ · f(h(k)i , yi)

)
∑
y∈K exp

(
θ · f(h(k)i , y)

)
The regularized log-likelihood function is then

L(θ) =
m∑
k=1

nk∑
i=1

log p(y
(k)
i |h

(k)
i ; θ)− λ

2

d∑
j=1

θ2j

The first term is the log-likelihood of the data under parameters θ. The second
term is a regularization term, which penalizes large parameter values. The positive
parameter λ dictates the relative weight of the two terms. An optimization method
is used to find the parameters θ∗ that maximize this function:

θ∗ = arg max
θ∈Rd

L(θ)

In summary, the estimation method is a direct application of the method de-
scribed in the previous chapter, for parameter estimation in log-linear models.

8.5 Decoding with MEMMs: Another Application of the
Viterbi Algorithm

We now turn to the problem of finding the most likely tag sequence for an input
sequence x1 . . . xn under a trigram MEMM; that is, the problem of finding

arg max
y1...yn∈Y(n)

p(y1 . . . yn|x1 . . . xn)

where

p(y1 . . . yn|x1 . . . xn) =
n∏
i=1

p(yi|hi; θ)

and hi = 〈yi−2, yi−1, x1 . . . xn, i〉.
First, note the similarity to the decoding problem for a trigram HMM tagger,

which is to find

arg max
y1...yn∈Y(n)

q(STOP|yn−1, yn)×
n∏
i=1

q(yi|yi−2, yi−1)e(xi|yi)

10 CHAPTER 8. MEMMS (LOG-LINEAR TAGGING MODELS)

Putting aside the q(STOP|yn−1, yn) term, we have essentially replaced

n∏
i=1

q(yi|yi−2, yi−1)× e(xi|yi)

by
n∏
i=1

p(yi|hi; θ)

The similarity of the two decoding problems leads to the decoding algorithm
for trigram MEMMs being very similar to the decoding algorithm for trigram
HMMs. We again use dynamic programming. The algorithm is shown in fig-
ure 8.1. The base case of the dynamic program is identical to the base case for
trigram HMMs, namely

π(*, *, 0) = 1

The recursive case is

π(k, u, v) = max
w∈Kk−2

(π(k − 1, w, u)× p(v|h; θ))

where h = 〈w, u, x1 . . . xn, k〉. (We again define K−1 = K0 = *, and Kk = K for
k = 1 . . . n.)

Recall that the recursive case for a trigram HMM tagger is

π(k, u, v) = max
w∈Kk−2

(π(k − 1, w, u)× q(v|w, u)× e(xk|v))

Hence we have simply replaced q(v|w, u)× e(xk|v) by p(v|h; θ).
The justification for the algorithm is very similar to the justification of the

Viterbi algorithm for trigram HMMs. In particular, it can be shown that for all
k ∈ {0 . . . n}, u ∈ Kk−1, v ∈ Kk,

π(k, u, v) = max
y−1...yk∈S(k,u,v)

k∏
i=1

p(yi|hi; θ)

where S(k, u, v) is the set of all sequences y−1y0 . . . yk such that yi ∈ Ki for
i = −1 . . . k, and yk−1 = u, yk = v.

8.6 Summary

To summarize, the main ideas behind trigram MEMMs are the following:

8.6. SUMMARY 11

Input: A sentence x1 . . . xn. A set of possible tags K. A model (for example a
log-linear model) that defines a probability

p(y|h; θ)

for any h, y pair where h is a history of the form 〈y−2, y−1, x1 . . . xn, i〉, and y ∈ K.
Definitions: Define K−1 = K0 = {*}, and Kk = K for k = 1 . . . n.
Initialization: Set π(0, *, *) = 1.
Algorithm:

• For k = 1 . . . n,

– For u ∈ Kk−1, v ∈ Kk,

π(k, u, v) = max
w∈Kk−2

(π(k − 1, w, u)× p(v|h; θ))

bp(k, u, v) = arg max
w∈Kk−2

(π(k − 1, w, u)× p(v|h; θ))

where h = 〈w, u, x1 . . . xn, k〉.

• Set (yn−1, yn) = argmaxu∈Kn−1,v∈Kn π(n, u, v)

• For k = (n− 2) . . . 1,

yk = bp(k + 2, yk+1, yk+2)

• Return the tag sequence y1 . . . yn

Figure 8.1: The Viterbi Algorithm with backpointers.

12 CHAPTER 8. MEMMS (LOG-LINEAR TAGGING MODELS)

1. We derive the model by first making the independence assumption

P (Yi = yi|X1 = x1 . . . Xn = xn, Y1 = y1 . . . Yn = yn)

= P (Yi = yi|X1 = x1 . . . Xn = xn, Yi−2 = yi−2, Yi−1 = yi−1)

and then assuming that

P (Yi = yi|X1 = x1 . . . Xn = xn, Yi−2 = yi−2, Yi−1 = yi−1)

= p(yi|hi; θ)

=
exp{θ · f(hi, yi)}∑
y exp{θ · f(hi, y)}

where hi = 〈yi−2, yi−1, x1 . . . xn, i〉, f(h, y) ∈ Rd is a feature vector, and
θ ∈ Rd is a parameter vector.

2. The parameters θ can be estimated using standard methods for parameter
estimation in log-linear models, for example by optimizing a regularized
log-likelihood function.

3. The decoding problem is to find

arg max
y1...yn∈Y(n)

n∏
i=1

p(yi|hi; θ)

This problem can be solved by dynamic programming, using a variant of the
Viterbi algorithm. The algorithm is closely related to the Viterbi algorithm
for trigram HMMs.

4. The feature vector f(h, y) can be sensitive to a wide range of information
in the history h in conjunction with the tag y. This is the primary advantage
of MEMMs over HMMs for tagging: it is much more straightforward and
direct to introduce features into the model.

