CS565: Intelligent Systems and Interfaces

Lecture: Language Modeling
$24^{\text {th }}$ Jan, 2017
Semester: Jan - May 2017

Ashish Anand
IIT Guwahati

Recap and Moving Forward

- Until Now
- Sentence segmentation, Tokenization
- Collocation
- Next
- Language Modeling: Generative model of language

Objective

- Understanding Language Model
- N-Gram Language Model
- Evaluating Language Model

Lets look at some examples

- Predicting next word
- I am planning
- Speech Recognition
- I saw a van vs I saw a 7

Example continued

- Spelling correction
- Study was conducted by students vs study was conducted $\underline{b e}$ students
- Their are two exams for this course vs There are two exams for this course
- Machine Translation
- I have asked him to do homework
- मैंने उससे पूछा कि होमवर्क करने के लिए
- मैंने उसे होमवर्क करने के लिए कहा

My objective was

- To find next probable word
- To find which sentence is more likely to be true

But it must be recognized that the notion "probability of a sentence" is an entirely useless one, under any known interpretation of this term.

Noam Chomsky

Anytime a linguist leaves the group the recognition rate goes up.
Fred Jelinek (then of the IBM speech group)

Language Models (LM)

- Models assigning probabilities to a sequence of words
- $P($ I saw a van $)>P($ l saw a 7$)$
-P(मैंने उससे पूछा कि होमवर्क करने के लिए) < P(मैंने उसे होमवर्क करने के लिए कहा)

Defining LM Formally

- We consider a vocabulary, a finite set denoted as \mathcal{V}, and a function $P\left(w_{1}, w_{2}, w_{3}, \ldots, w_{n}\right)$, such that
- For any $\left\langle w_{1}, w_{2}, w_{3}, \ldots ., w_{n}\right\rangle \in \mathcal{V}^{\dagger}, p\left(w_{1}, w_{2}, w_{3}, \ldots ., w_{n}\right) \geq$ 0
- $\Sigma p\left(w_{1}, w_{2}, w_{3}, \ldots, w_{n}\right)=1$,
where $\mathcal{V}^{\dagger}:\left\{S=w_{1} w_{2} w_{3} \ldots w_{n} \mid w_{i} \in \mathcal{V}\right\}$.

Estimating $P\left(w_{1}, w_{2}, . ., w_{n}\right)$

- Our task is to compute

P(I, am, fascinated, with, recent, advances, in, AI)

- Chain Rule

Estimating $\mathrm{P}\left(\mathrm{w}_{1}, \mathrm{w}_{2}, . ., \mathrm{w}_{\mathrm{n}}\right)$

- Chain Rule
- $P\left(w_{1}, w_{2}, w_{3}, \ldots ., w_{n}\right)=P\left(w_{1}\right) P\left(w_{2} \mid w_{1}\right) P\left(w_{3} \mid w_{1}, w_{2}\right) \ldots$. $\mathrm{P}\left(\mathrm{w}_{\mathrm{n}} \mid \mathrm{w}_{1}, . ., \mathrm{w}_{\mathrm{n}-1}\right)$

Estimating $\mathrm{P}\left(\mathrm{w}_{\mathrm{n}} \mid \mathrm{w}_{1}, . ., \mathrm{w}_{\mathrm{n}-1}\right)$

- Could we just count and divide?

$$
P(e a t \mid I \text { want to })=\frac{\operatorname{count}(I \text { want to eat })}{\operatorname{count}(\text { I want to })}
$$

- What is the problem here?

Estimating $\mathrm{P}\left(\mathrm{w}_{\mathrm{n}} \mid \mathrm{w}_{1}, . ., \mathrm{w}_{\mathrm{n}-1}\right)$

- Too many possible sentences
- Data sparseness
- Poor generalizability

Markov Assumption

- Simplifying assumption:

$$
P(\text { eat } \mid I \text { want to }) \sim P(\text { eat } \mid \text { to })
$$

or

$$
P(\text { eat } \mid I \text { want to }) \sim P(\text { eat } \mid \text { want to })
$$

Markov Assumption

$$
P\left(w_{1}, w_{2}, w_{3}, \ldots, w_{n}\right) \sim \prod_{i} P\left(w_{i} \mid w_{i-k}, \ldots ., w_{i-1}\right)
$$

i.e., Each component in the product is getting approximated by Markov assumption

$$
P\left(w_{i} \mid w_{1}, w_{2}, w_{3}, \ldots ., w_{i-1}\right) \sim P\left(w_{i} \mid w_{i-k}, \ldots ., w_{i-1}\right)
$$

N-gram Models

- Unigram: Simplest Model (does not depend on anything)

$$
P\left(w_{1}, w_{2}, w_{3}, \ldots ., w_{n}\right) \sim \prod_{i} P(w i)
$$

- Bigram Model ($1^{\text {st }}$ Order Markov model)

$$
P\left(w_{1}, w_{2}, w_{3}, \ldots ., w_{n}\right) \sim \prod_{i} P\left(w_{i} \mid w_{i-1}\right)
$$

- Trigram Model (2 ${ }^{\text {nd }}$ order Markov model)

$$
P\left(w_{1}, w_{2}, w_{3}, \ldots ., w_{n}\right) \sim \prod_{i} P\left(w_{i} \mid w_{i-2}, w_{i-1}\right)
$$

N-gram Model: Issue

- Long-distance dependencies
"The computer which I had just put into the lab on the fifth floor crashed"

Estimating the Probabilities

Data

- Training
- Development
- Test

Maximum Likelihood Estimate

- Unigram

$$
P\left(w_{i}\right)=\frac{c\left(w_{i}\right)}{K} ;
$$

K: Total number of tokens in training set

- Bigram

$$
P\left(w_{i} \mid w_{i-1}\right)=\frac{c\left(w_{i-1}, w_{i}\right)}{c\left(w_{i-1}\right)}
$$

- N-Gram

$$
P\left(w_{n} \mid w_{n-N+1}^{n-1}\right)=\frac{c\left(w_{n-N+1}^{n-1} w_{n}\right)}{c\left(w_{n-N+1}^{n-1}\right)}
$$

Bigram Probabilities

eat on	.16	eat Thai	.03
eat some	.06	eat breakfast	.03
eat lunch	.06	eat in	.02
eat dinner	.05	eat Chinese	.02
eat at	.04	eat Mexican	.02
eat a	.04	eat tomorrow	.01
eat Indian	.04	eat dessert	.007
eat today	.03	eat British	.001

A fragment of bigram probabilities from the Berkeley Restaurant Project showing most likely word to follow eat

Computing probability of a sentence

<S> I . 25	I want . 32	to . 65	to eat . 26	British food . 60
<s> I'd . 06	I would . 29	want a . 05	to have .14	British restaurant . 15
<s> Tell . 04	I don't . 08	want some . 04	to spend .09	British cuisine 01
<s> I'm . 02	I have . 04	want thai .01	to be . 02	British lunch

Figure 6.3 More fragments from the bigram grammar from the Berkeley Restaurant Project.
$P(<s>\mid$ want to eat British food $</ s>)=P(I \mid<s>) P($ want |I) $P($ to/want $) P$ (eat/to) P(British/eat) P(food|British) P(</s>|food)

Language Model Evaluation

Two paradigms

- Intrinsic evaluation
- Extrinsic evaluation

Intrinsic Evaluation: Perplexity

- Given a test data of m sentences: $s_{1}, s_{2}, \ldots . . ., s_{m}$
- Probability of a sentence under this model $p\left(s_{i}\right)$
- Log-Probability of all sentences: $\log \Pi p\left(s_{i}\right)=\sum \log p\left(s_{i}\right)$

Perplexity: Alternate definitions

- Perplexity $=2^{-1}$, where $\mathrm{I}=1 / \mathrm{M}\left(\sum \log p\left(s_{i}\right)\right)$
- Perplexity $=P\left(s_{1} s_{2} \ldots \ldots . . s_{n}\right)^{-(1 / M)}$
- Smaller the value of perplexity, better the language model is.

Interpreting Perplexity

- Weighted average branching factor
- Branching factor: number of possible next words that can follow any word.

One specific example

- Training: 38 million words from Wall Street Journals [vocab size: 19,979]
- Test: 1.5 million words

	Unigram	Bigram	Trigram
Perplexity	962	170	109

Generalization

- 1 gram: Hill he late speaks; or! a more to leg less first you enter
- 2 gram: What means, sir. I confess she? then all sorts, he is trim, captain
- 3 gram: This shall forbid it should be branded, if renown made it empty
- 4 gram: It cannot be but so.

Generalization

- 1 gram: Months the my and issue of year foreign
- 2 gram: Last December through the way to preserve the Hudson
- 3 gram: They also point to ninety nine point six billion dollars from two

Source: SLP (3 ${ }^{\text {rd }}$ ed.), Figure 4.4. Training data on 40 million words of Wall Street Journal

Unknown words

- Fix vocabulary and words within training data not appearing in vocabulary are mapped to <UNK>
- Less frequent words mapped to <UNK>

Sparsity

- Works well if test corpus is very similar to training, which is not generally the case.
- Training Set
...... denied the allegations denied the reports
...... denied the claims
...... denied the request
- Test Set
.... denied the offer
.... denied the loan
P("offer" | denied the) $=0$

Smoothing

- Next Lecture

Reference

- SLP (3 $3^{\text {rd }}$ Ed.) , Chapter 4
- Collin's lecture-notes on Language Modeling

