CS 565: Intelligent Systems and Interfaces

Lecture: Words – Finding Collocations 18th Jan, 2017 Semester: Jan - May 2017

> Ashish Anand IIT Guwahati

Pearson's Chi-square Test

- Does not require normal distribution assumption as in t-test
- Test for dependence or association
- Make a frequency or contingency table
- Compare observed and expected frequencies

Chi-square test: contd.

$$X^2 = \sum_{ij} \frac{(O_{ij} - Eij)^2}{E_{ij}}$$

 O_{ij} : Observed frequency; E_{ij} : Expected frequency X² is asymptotically χ^2 distributed.

Chi-Square: Other Applications

• Metric for corpus similarity (Kilgarriff and Rose, 1998)

	Corpus 1	Corpus 2
Word 1	w ₁₁	w ₁₂
Word 2	w ₂₁	W ₂₂
Word 3	w ₃₁	W ₃₂

Likelihood Ratio Test

- Two alternate hypotheses
 - H1: $p(w_2 | w_1) = p = p(w_2 | -w_1) \rightarrow Independence$
 - H2: $p(w_2 | w_1) = p1 \neq p2 = p(w_2 | -w_1) \rightarrow Association$
- Define Likelihood Ratio, $\lambda = L(H_1) / L(H_2)$
 - A number telling how much more likely is one hypothesis over the other.

Calculating Probabilities and Likelihood

- What we do
 - $p = c_2/N$; $p_1 = c_{12}/c_1$; $p_2 = (c_2 c_{12})/(N c_1)$ c_2 : # of occurrence of w_i ; c_{12} : # of occurrence of w_{ij}
- Under the hood
 - Maximum Likelihood Estimate

Likelihood Ratio Test

	H ₁	H ₂
P(w ₂ w ₁)	$p = c_2 / N$	p ₁ = c ₁₂ / c ₁
P(w ₂ -w ₁)	$p = c_2 / N$	$p_2 = (c_2 - c_{12}) / (N - c_1)$
$c_{12}^{}$ out of $c_1^{}$ bigrams are $w_1^{}w_2^{}$	b(c ₁₂ ; c ₁ , p)	b(c ₁₂ ; c ₁ , p ₁)
$c_2 - c_{12}$ out of N- c_1 bigrams are $-w_1w_2$	b(c ₂ -c ₁₂ ; N-c ₁ , p)	b(c ₂ -c ₁₂ , N-c ₁ , p ₂)

 $L(H_1) = b(c_{12}; c_1, p) b(c_2-c_{12}; N-c_1, p)$ $L(H_2) = b(c_{12}; c_1, p_1) b(c_2-c_{12}, N-c_1, p_2)$

 $Log \lambda = log (L(H_1) / L(H_2))$ $-2 log L \sim \chi^2$

$\frac{-2\log\lambda}{1000}$	$C(w^1)$	$C(w^2)$	$C(w^1w^2)$	w^1	W^2
1291.42	12593	932	150	most	powerful
99.31	379	932	10	politically	powerful
82.96	932	934	10	powerful	computers
80.39	932	3424	13	powerful	force
57.27	932	291	6	powerful	symbol
51.66	932	40	4	powerful	lobbies
51.52	171	932	5	economically	powerful
51.05	932	43	4	powerful	magnet
50.83	4458	932	10	less	powerful
50.75	6252	932	11	very	powerful
49.36	932	2064	8	powerful	position
48.78	932	591	6	powerful	machines
47.42	932	2339	8	powerful	computer
43.23	932	16	3	powerful	magnets
43.10	932	396	5	powerful	chip
40.45	932	3694	8	powerful	men
36.36	932	47	3	powerful	486
36.15	932	268	4	powerful	neighbor
35.24	932	5245	8	powerful	political
34.15	932	3	2	powerful	cudgels
34.15 able 5.12 B	932 Sigrams of	3 E powerful	2 with the high	powerful	cudgels

Source: Table 5.12 [FSNLP]

Reference

- Chapter 5 FSNLP
- FSNLP: Foundations of Statistical Natural Language Processing, Manning & Schütze