Assignment 2

Ashish Anand
CS202: Discrete Mathematics
Due Date: September 15, 2017

September 4, 2017

Question 1. [2 points] Prove the following statement by proving its contrapositive: if r is irrational, then $r^{\frac{1}{5}}$ is irrational.

Question 2. [5 points] Prove that between every two rational numbers, there is an irrational number.

Question 3. [3 points] Show that the argument form with premises $(p \wedge t) \rightarrow(r \vee s)$, $q \rightarrow(u \wedge t), u \rightarrow p$, and $\neg s$, and conclusion $q \rightarrow r$ is valid.

Question 4. [5 points] Show that the union of a countable number of countable sets is countable.

Question 5. [5 points] Show that the set $\mathbb{Z}^{+} \times \mathbb{Z}^{+}$is countable.
Question 6. [5 points] Show that the set of functions from the positive integers to the set $\{0,1,2,3,4,5,6,7,8,9\}$ is uncountable.

Question 7. [2+3 points]
I. The square of any integer is either of the form $3 k$ or $3 k+1$.
II. Prove that no integer in the following sequence is a perfect square:

$$
11,111,1111,11111
$$

Question 8. [5 points] For $n \geq 1$, and $a, b \in \mathbb{Z}^{+}$, if $a^{n} \mid b^{n}$, then $a \mid b$.
Question 9. [5points] Find the remainder when the following sum is divided by 4

$$
1^{5}+2^{5}+3^{5}+\ldots+99^{5}+100^{5}
$$

