
Speech and Language Processing. Daniel Jurafsky & James H. Martin. Copyright c© 2015. All

rights reserved. Draft of August 24, 2015.

CHAPTER

19 Vector Semantics

The asphalt that Los Angeles is famous for occurs mainly on its freeways. But in the
middle of the city is another patch of asphalt, the La Brea tar pits, and this asphalt
preserves millions of fossil bones from the last of the Ice Ages of the Pleistocene
Epoch. One of these fossils is the Smilodon, or sabre-toothed tiger, instantly rec-
ognizable by its long canines. Five million years ago or so, a completely different
sabre-tooth tiger called Thylacosmilus lived in Argentina and other parts of South
America. Thylacosmilus was a marsupial whereas Smilodon was a placental mam-
mal, but Thylacosmilus had the same long upper canines and, like Smilodon, had a
protective bone flange on the lower jaw. The similarity of these two mammals is one
of many example of parallel or convergent evolution, in which particular contexts
or environments lead to the evolution of very similar structures in different species
(Gould, 1980).

The role of context is also important in the similarity of a less biological kind
of organism: the word. Words that occur in similar contexts tend to have similar
meanings. This insight was perhaps first formulated by Harris (1954) who pointed
out that “oculist and eye-doctor . . . occur in almost the same environments” and more
generally that “If A and B have almost identical environments. . . we say that they are
synonyms.” But the most famous statement of the principle comes a few years later
from the linguist J. R. Firth (1957), who phrased it as “You shall know a word by
the company it keeps!”.

The meaning of a word is thus related to the distribution of words around it.
Imagine you had never seen the word tesgüino, but I gave you the following 4 sen-
tences (an example modified by Lin (1998) from (Nida, 1975, page 167)):

(19.1) A bottle of tesgüino is on the table.
Everybody likes tesgüino.
Tesgüino makes you drunk.
We make tesgüino out of corn.

You can figure out from these sentences that tesgüino means a fermented alco-
holic drink like beer, made from corn. We can capture this same intuition automat-
ically by just counting words in the context of tesgüino; we’ll tend to see words
like bottle and drunk. The fact that similar context words occur around the word
beer or liquor or tequila can help us discover the similarity between these words and
tesgüino. We can even look at more sophisticated features of the context, syntactic
features like ‘occurs before drunk’ or ‘occurs after bottle’ or ‘is the direct object of
likes’.

In this chapter we introduce such distributional methods, in which the meaning
of word is computed from the distribution of words around it. These words are
generally represented as a vector of numbers related in some way to counts, and so
these methods are often called vector semantics.

We’ll introduce three popular vector types. We’ll begin with very sparse, long
(high dimensional) vectors with many zeros (since most words simply never occur in

2 CHAPTER 19 • VECTOR SEMANTICS

the context of others). We’ll then introduce two methods of generating very dense,
short vectors: (1) using dimensionality reduction methods like SVD, (2) using neuralSVD

nets like the popular skip-gram or CBOW approaches.skip-gram

CBOW The shared intuition of all these approaches is to model a word by embedding it
into a vector space. For this reason the representation of a word as a vector is often
called an embedding. By contrast, in many traditional NLP applications, a word isembedding

represented as an index in a vocabulary list, or as a string of letters. (Consider the
old philosophy joke: ”Q: What’s the meaning of life? A: LIFE”, drawing on the
philosophical tradition of representing concepts by words with small capital letters.)
Vector models of meaning offer a method of representing a word that is much more
fine-grained way than a simple atom like LIFE, and hence may help in drawing rich
inferences about word meaning.

Vector models of meaning have been used for all sorts of NLP tasks for many
decades. They are commonly used as features to represent words in NLP applica-
tions from named entity extraction to parsing to semantic role labeling to relation
extraction. Vector models are also the most common way to compute semantic sim-
ilarity, the similarity between two words, two paragraphs, or two documents, an
important tool in practical applications like question answering, summarization, or
automatic essay grading.

19.1 Words and Vectors

Vector or distributional models of meaning are generally based on a co-occurrence
matrix, a way of representing how often words co-occur. Let’s begin by looking at
one such co-occurrence matrix, a term-document matrix.

19.1.1 Vectors and documents
In a term-document matrix, each row represents a word in the vocabulary andterm-document

matrix
each column represents a document from some collection. Fig. 19.1 shows a small
selection from a term-document matrix showing the occurrence of four words in
four plays by Shakespeare. Each cell in this matrix represents the number of times a
particular word (defined by the row) occurs in a particular document (defined by the
column). Thus clown appeared 117 times in Twelfth Night.

As You Like It Twelfth Night Julius Caesar Henry V
battle 1 1 8 15
soldier 2 2 12 36

fool 37 58 1 5
clown 5 117 0 0
Figure 19.1 The term-document matrix for four words in four Shakespeare plays. Each
cell contains the number of times the (row) word occurs in the (column) document

The term-document matrix of Fig. 19.1 was first defined as part of the vector
space model of information retrieval (Salton, 1971). In this model, a document isvector space

model
represented as a count vector, a column in Fig. 19.2.

To review some basic linear algebra, a vector is, at heart, just a list of numbers.vector

So As You Like It is represented as the list [1,2,37,5] and Julius Caesar is represented
as the list [8,12,10]. A vector space is a collection of vectors, characterized by theirvector space

dimension. Furthermore, the ordering of the numbers in a vector space are notdimension

19.1 • WORDS AND VECTORS 3

arbitrary; each position indicates a meaningful dimension on which the documents
can vary. Thus the first dimension for both these vectors corresponds to the number
of times the word battle occurs, and we can compare each dimension, noting for
example that the vectors for As You Like It and Twelfth Night have the same value 1
for the first dimension.

As You Like It Twelfth Night Julius Caesar Henry V
battle 1 1 8 15
soldier 2 2 12 36

fool 37 58 1 5
clown 5 117 0 0
Figure 19.2 The term-document matrix for four words in four Shakespeare plays. The red
boxes show that each document is represented as a column vector of length four.

We can think of document vectors as a point in |V |-dimensional space; thus
the documents in Fig. 19.2 are points in 4-dimensional space. Since 4-dimensional
spaces are hard to draw in textbooks, Fig. 19.3 shows a visualization in two dimen-
sions; we’ve arbitrarily chosen the dimensions corresponding to the words battle and
fool.

5 10 15 20 25 30

5

10

Henry V [5,15]

As You Like It [1,37]

Julius Caesar [1,8]ba
ttl

e

 fool

Twelfth Night [1,56]

15

40

35 40 45 50 55 60

Figure 19.3 A spatial visualization of the document vectors for the four Shakespeare play
documents, showing just two of the dimensions, corresponding to the words battle and fool.
The comedies have high values for the fool dimension and low values for the battle dimension.

Term-document matrices were originally defined as a means of finding similar
documents for the task of document information retrieval. Two documents that are
similar will tend to have similar words, and if two documents have similar words
their column vectors will tend to be similar. The vectors for the comedies As You
like It [1,2,37,5] and Twelfth Night [1,2,58,117] look a lot more like each other (more
fools and clowns than soldiers and battles) than they do like Julius Caesar [8,12,1,0]
or Henry V [15,36,5,0]. We can see the intuition with the raw numbers; in the
first dimension (battle) the comedies have low numbers and the others have high
numbers, and we can see it visually in Fig. 19.3; we’ll see very shortly how to
quantify this intuition more formally.

A real term-document matrix, of course, wouldn’t just have 4 rows and columns,
let alone 2. More generally, the term-document matrix X has |V | rows (one for each
word type in the vocabulary) and D columns (one for each document in the collec-
tion); as we’ll see, vocabulary sizes are generally at least in the tens of thousands,
and the number of documents can be enormous (think about all the pages on the
web).

4 CHAPTER 19 • VECTOR SEMANTICS

Information retrieval (IR) is the task of finding the document d from the Dinformation
retrieval

documents in some collection that best matches a query q. For IR we’ll therefore also
represent a query by a vector, also of length |V |, and we’ll need a way to compare
two vectors to find how similar they are. (Doing IR will also require efficient ways
to store and manipulate these vectors, which is accomplished by making use of the
convenient fact that these vectors are sparse, i.e., mostly zeros). Later in the chapter
we’ll introduce some of the components of this vector comparison process: the tf-idf
term weighting, and the cosine similarity metric.

19.1.2 Words as vectors
We’ve seen that documents can be represented as vectors in a vector space. But
vector semantics can also be used to represent the meaning of words, by associating
each word with a vector.

The word vector is now a row vector rather than a column vector, and hencerow vector

the dimensions of the vector are different. The four dimensions of the vector for
fool, [37,58,1,5], correspond to the four Shakespeare plays. The same four dimen-
sions are used to form the vectors for the other 3 words: clown, [5, 117, 0, 0]; bat-
tle, [1,1,8,15]; and soldier [2,2,12,36]. Each entry in the vector thus represents the
counts of the word’s occurrence in the document corresponding to that dimension.

For documents, we saw that similar documents had similar vectors, because sim-
ilar documents tend to have similar words. This same principle applies to words:
similar words have similar vectors because they tend to occur in similar documents.
The term-document matrix thus lets us represent the meaning of a word by the doc-
uments it tends to occur in.

However, it is most common to use a different kind of context for the dimensions
of a word’s vector representation. Rather than the term-document matrix we use the
term-term matrix, more commonly called the word-word matrix or the term-term-term

matrix
word-word

matrix context matrix, in which the columns are labeled by words rather than documents.
This matrix is thus of dimensionality |V |× |V | and each cell records the number of
times the row (target) word and the column (context) word co-occur in some context
in some training corpus. The context could be the document, in which case the cell
represents the number of times the two words appear in the same document. It is
most common, however, to use smaller contexts, generally a window around the
word, for example of 4 words to the left and 4 words to the right, in which case
the cell represents the number of times (in some training corpus) the column word
occurs in such a ±4 word window around the row word.

For example here are 7-word windows surrounding four sample words from the
Brown corpus (just one example of each word):

sugar, a sliced lemon, a tablespoonful of apricot preserve or jam, a pinch each of,
their enjoyment. Cautiously she sampled her first pineapple and another fruit whose taste she likened

well suited to programming on the digital computer. In finding the optimal R-stage policy from
for the purpose of gathering data and information necessary for the study authorized in the

For each word we collect the counts (from the windows around each occurrence)
of the occurrences of context words. Fig. 19.4 shows a selection from the word-word
co-occurrence matrix computed from the Brown corpus for these four words.

Fig. 19.5 shows a spatial visualization. Note in Fig. 19.4 that the two words
apricot and pineapple are more similar (both pinch and sugar tend to occur in their
window) while digital and information are more similar.

Note that |V |, the length of the vector, is generally the size of the vocabulary,
usually between 10,000 and 50,000 words (using the most frequent words in the

19.2 • WEIGHING TERMS: POINTWISE MUTUAL INFORMATION (PMI) 5

aardvark ... computer data pinch result sugar ...
apricot 0 ... 0 0 1 0 1

pineapple 0 ... 0 0 1 0 1
digital 0 ... 2 1 0 1 0

information 0 ... 1 6 0 4 0
Figure 19.4 Co-occurrence vectors for four words, computed from the Brown corpus,
showing only six of the dimensions (hand-picked for pedagogical purposes). The vector for
the word digital is outlined in red. Note that a real vector would have vastly more dimensions
and thus be much sparser.

1 2 3 4 5 6

1

2 digital
 [1,1]

re
su

lt

 data

information
 [6,4] 3

4

Figure 19.5 A spatial visualization of word vectors for digital and information, showing
just two of the dimensions, corresponding to the words data and result.

training corpus; keeping words after about the most frequent 50,000 or so is gener-
ally not helpful). But of course since most of these numbers are zero these are sparse
vector representations, and there are efficient algorithms for storing and computing
with sparse matrices.

The size of the window used to collect counts can vary based on the goals of
the representation, but is generally between 1 and 8 words on each side of the target
word (for a total context of 3-17 words). In general, the shorter the window, the
more syntactic the representations, since the information is coming from immedi-
ately nearby words; the longer the window, the more semantic the relations.

We have been talking loosely about similarity, but it’s often useful to distinguish
two kinds of similarity or association between words (Schütze and Pedersen, 1993).
Two words have first-order co-occurrence (sometimes called syntagmatic associ-first-order

co-occurrence
ation) if they are typically nearby each other. Thus wrote is a first-order associate
of book or poem. Two words have second-order co-occurrence (sometimes calledsecond-order

co-occurrence
paradigmatic association) if they have similar neighbors. Thus wrote is a second-
order associate of words like said or remarked.

Now that we have some intuitions, let’s move on to examine the details of com-
puting a vector representation for a word. We’ll begin with one of the most com-
monly used vector representations: PPMI or positive pointwise mutual information.

19.2 Weighing terms: Pointwise Mutual Information (PMI)

The co-occurrence matrix in Fig. 19.4 represented each cell by the raw frequency of
the co-occurrence of two words. It turns out, however, that simple frequency isn’t
the best measure of association between words. One problem is that raw frequency
is very skewed and not very discriminative. If we want to know what kinds of

6 CHAPTER 19 • VECTOR SEMANTICS

contexts are shared by apricot and pineapple but not by digital and information,
we’re not going to get good discrimination from words like the, it, or they, which
occur frequently with all sorts of words and aren’t informative about any particular
word.

Instead we’d like context words that are particularly informative about the target
word. The best weighting or measure of association between words should tell us
how much more often than chance the two words co-occur.

Pointwise mutual information is just such a measure. It was proposed by Church
and Hanks (1989) and (Church and Hanks, 1990), based on the notion of mutual
information. The mutual information between two random variables X and Y ismutual

information

I(X ,Y) =
∑

x

∑
y

P(x,y) log2
P(x,y)

P(x)P(y)
(19.2)

The pointwise mutual information (Fano, 1961)1 is a measure of how often two
pointwise

mutual
information events x and y occur, compared with what we would expect if they were independent:

I(x,y) = log2
P(x,y)

P(x)P(y)
(19.3)

We can apply this intuition to co-occurrence vectors by defining the pointwise
mutual information association between a target word w and a context word c as

PMI(w,c) = log2
P(w,c)

P(w)P(c)
(19.4)

The numerator tells us how often we observed the two words together (assuming
we compute probability by using the MLE). The denominator tells us how often we
would expect the two words to co-occur assuming they each occurred independently,
so their probabilities could just be multiplied. Thus, the ratio gives us an estimate of
how much more the target and feature co-occur than we expect by chance.

PMI values range from negative to positive infinity. But negative PMI values
(which imply things are co-occurring less often than we would expect by chance)
tend to be unreliable unless our corpora are enormous. To distinguish whether two
words whose individual probability is each 10−6 occur together more often than
chance, we would need to be certain that the probability of the two occurring to-
gether is significantly different than 10−12, and this kind of granularity would require
an enormous corpus. Furthermore it’s not clear whether it’s even possible to evalu-
ate such scores of ‘unrelatedness’ with human judgments. For this reason it is more
common to use Positive PMI (called PPMI) which replaces all negative PMI valuesPPMI

with zero (Church and Hanks 1989, Dagan et al. 1993, Niwa and Nitta 1994)2:

PPMI(w,c) = max(log2
P(w,c)

P(w)P(c)
,0) (19.5)

More formally, let’s assume we have a co-occurrence matrix F with W rows
(words) and C columns (contexts), where fi j gives the number of times word wi
occurs in context c j. This can be turned into a PPMI matrix where ppmii j gives the
PPMI value of word wi with context c j as follows:

1 Fano actually used the phrase mutual information to refer to what we now call pointwise mutual infor-
mation and the phrase expectation of the mutual information for what we now call mutual information;
the term mutual information is still often used to mean pointwise mutual information.
2 Positive PMI also cleanly solves the problem of what to do with zero counts, using 0 to replace the
− inf from log(0).

19.2 • WEIGHING TERMS: POINTWISE MUTUAL INFORMATION (PMI) 7

pi j =
fi j∑W

i=1
∑C

j=1 fi j
pi∗ =

∑C
j=1 fi j∑W

i=1
∑C

j=1 fi j
p∗ j =

∑W
i=1 fi j∑W

i=1
∑C

j=1 fi j
(19.6)

PPMIi j = max(log2
Pi j

Pi∗P∗ j
,0) (19.7)

Thus for example we could compute PPMI(w=information,c=data), assuming
we pretended that Fig. 19.4 encompassed all the relevant word contexts/dimensions,
as follows:

P(w=information,c=data) =
6
19

= .316

P(w=information) =
11
19

= .579

P(c=data) =
7

19
= .368

ppmi(information,data) = log2(.316/(.368∗ .579)) = .568

Fig. 19.6 shows the joint probabilities computed from the counts in Fig. 19.4,
and Fig. 19.7 shows the PPMI values.

p(w,context) p(w)
computer data pinch result sugar p(w)

apricot 0 0 0.5 0 0.5 0.11
pineapple 0 0 0.5 0 0.5 0.11

digital 0.11 0.5 0 0.5 0 0.21
information 0.5 .32 0 0.21 0 0.58

p(context) 0.16 0.37 0.11 0.26 0.11
Figure 19.6 Replacing the counts in Fig. 19.4 with joint probabilities, showing the
marginals around the outside.

computer data pinch result sugar
apricot 0 0 2.25 0 2.25

pineapple 0 0 2.25 0 2.25
digital 1.66 0 0 0 0

information 0 0.57 0 0.47 0
Figure 19.7 The PPMI matrix showing the association between words and context words,
computed from the counts in Fig. 19.4 again showing six dimensions.

PMI has the problem of being biased toward infrequent events; very rare words
tend to have very high PMI values. One way to reduce this bias toward low frequency
events is to slightly change the computation for P(c), using a different function Pα(c)
that raises contexts to the power of α (Levy et al., 2015):

PPMIα(w,c) = max(log2
P(w,c)

P(w)Pα(c)
,0) (19.8)

Pα(c) =
count(c)α∑
c count(c)α

(19.9)

8 CHAPTER 19 • VECTOR SEMANTICS

Levy et al. (2015) found that a setting of α = 0.75 improved performance of
embeddings on a wide range of tasks (drawing on a similar weighting used for skip-
grams (Mikolov et al., 2013a) and GloVe (Pennington et al., 2014)). This works
because raising the probability to α = 0.75 increases the probability assigned to rare
contexts, and hence lowers their PMI (Pα(c)> P(c) when c is rare).

Another possible solution is Laplace smoothing: Before computing PMI, a small
constant k (values of 0.1-3 are common) is added to each of the counts, shrinking
(discounting) all the non-zero values. The larger the k, the more the non-zero counts
are discounted.

computer data pinch result sugar
apricot 2 2 3 2 3

pineapple 2 2 3 2 3
digital 4 3 2 3 2

information 3 8 2 6 2
Figure 19.8 Laplace (add-2) smoothing of the counts in Fig. 19.4.

computer data pinch result sugar
apricot 0 0 0.56 0 0.56

pineapple 0 0 0.56 0 0.56
digital 0.62 0 0 0 0

information 0 0.58 0 0.37 0
Figure 19.9 The Add-2 Laplace smoothed PPMI matrix from the add-2 smoothing counts
in Fig. 19.8.

19.2.1 Alternatives to PPMI for measuring association
While PPMI is quite popular, it is by no means the only measure of association
between two words (or between a word and some other feature). Other common
measures of association come from information retrieval (tf-idf, Dice) or from hy-
pothesis testing (the t-test, the likelihood-ratio test). In this section we briefly sum-
marize one of each of these types of measures.

Let’s first consider the standard weighting scheme for term-document matrices
in information retrieval, called tf-idf. tf-idf (this is a hyphen, not a minus sign) istf-idf

the product of two factors. The first is the term frequency (Luhn, 1957): simply theterm frequency

frequency of the word in the document, although we may also use functions of this
frequency like the log frequency.

The second factor is used to give a higher weight to words that occur only in a
few documents. Terms that are limited to a few documents are useful for discrimi-
nating those documents from the rest of the collection; terms that occur frequently
across the entire collection aren’t as helpful. The inverse document frequency or

inverse
document
frequency

IDF term weight (Sparck Jones, 1972) is one way of assigning higher weights toIDF

these more discriminative words. IDF is defined using the fraction N/d fi, where N
is the total number of documents in the collection, and d fi is the number of doc-
uments in which term i occurs. The fewer documents in which a term occurs, the
higher this weight. The lowest weight of 1 is assigned to terms that occur in all
the documents. Because of the large number of documents in many collections, this
measure is usually squashed with a log function. The resulting definition for inverse
document frequency (IDF) is thus

19.3 • MEASURING SIMILARITY: THE COSINE 9

idfi = log
(

N
d fi

)
(19.10)

Combining term frequency with IDF results in a scheme known as tf-idf weight-tf-idf

ing of the value for word i in document j, wi j:

wi j = tfi jidfi (19.11)

Tf-idf thus prefers words that are frequent in the current document j but rare overall
in the collection.

The tf-idf weighting is by far the dominant way of weighting co-occurrence ma-
trices in information retrieval, but also plays a role in many other aspects of natural
language processing including summarization.

Tf-idf, however, is not generally not used as a component in measure of word
similarity; for that PPMI and significance-testing metrics like t-test and likelihood-
ratio are more common. The t-test statistic, like PMI, can be used to measure howt-test

much more frequent the association is than chance. The t-test statistic computes the
difference between observed and expected means, normalized by the variance. The
higher the value of t, the greater the likelihood that we can reject the null hypothesis
that the observed and expected means are the same.

t =
x̄−µ√

s2

N

(19.12)

When applied to association between words, the null hypothesis is that the two
words are independent, and hence P(a,b) = P(a)P(b) correctly models the relation-
ship between the two words. We want to know how different the actual MLE prob-
ability P(a,b) is from this null hypothesis value, normalized by the variance. The
variance s2 can be approximated by the expected probability P(a)P(b) (see Manning
and Schütze (1999)). Ignoring N (since it is constant), the resulting t-test association
measure is thus (Curran, 2003):

t-test(a,b) =
P(a,b)−P(a)P(b)√

P(a)P(b)
(19.13)

See the Historical Notes section for a summary of various other weighting factors
for distributional models of meaning.

19.3 Measuring similarity: the cosine

To define similarity between two target words v and w, we need a measure for taking
two such vectors and giving a measure of vector similarity. By far the most common
similarity metric is the cosine of the angle between the vectors. In this section we’ll
motivate and introduce this important measure.

The cosine—like most measures for vector similarity used in NLP—is based on
the dot product operator from linear algebra, also called the inner product:dot product

inner product

dot-product(~v,~w) =~v ·~w =

N∑
i=1

viwi = v1w1 + v2w2 + ...+ vNwN (19.14)

10 CHAPTER 19 • VECTOR SEMANTICS

As we will see, most metrics for similarity between vectors are based on the dot
product. The dot product acts as a similarity metric because it will tend to be high
just when the two vectors have large values in the same dimensions. Alternatively,
vectors that have zeros in different dimensions—orthogonal vectors— will have a
dot product of 0, representing their strong dissimilarity.

This raw dot-product, however, has a problem as a similarity metric: it favors
long vectors. The vector length is defined asvector length

|~v|=

√√√√ N∑
i=1

v2
i (19.15)

The dot product is higher if a vector is longer, with higher values in each dimension.
More frequent words have longer vectors, since they tend to co-occur with more
words and have higher co-occurrence values with each of them. Raw dot product
thus will be higher for frequent words. But this is a problem; we’d like a similarity
metric that tells us how similar two words are irregardless of their frequency.

The simplest way to modify the dot product to normalize for the vector length is
to divide the dot product by the lengths of each of the two vectors. This normalized
dot product turns out to be the same as the cosine of the angle between the two
vectors, following from the definition of the dot product between two vectors ~a and
~b:

~a ·~b = |~a||~b|cosθ

~a ·~b
|~a||~b|

= cosθ (19.16)

The cosine similarity metric between two vectors~v and ~w thus can be computedcosine

as:

cosine(~v,~w) =
~v ·~w
|~v||~w|

=

N∑
i=1

viwi√√√√ N∑
i=1

v2
i

√√√√ N∑
i=1

w2
i

(19.17)

For some applications we pre-normalize each vector, by dividing it by its length,
creating a unit vector of length 1. Thus we could compute a unit vector from ~a byunit vector

dividing it by |~a|. For unit vectors, the dot product is the same as the cosine.
The cosine value ranges from 1 for vectors pointing in the same direction, through

0 for vectors that are orthogonal, to -1 for vectors pointing in opposite directions.
But raw frequency or PPMI are non-negative, so the cosine for these vectors ranges
from 0-1.

Let’s see how the cosine correctly predicts which of the words apricot or dig-
ital is closer in meaning to information, just using raw counts from the following
simplified table:

large data computer
apricot 2 0 0
digital 0 1 2

information 1 6 1

19.3 • MEASURING SIMILARITY: THE COSINE 11

cos(apricot, information) =
2+0+0√

4+0+0
√

1+36+1
=

2
2
√

38
= .16

cos(digital, information) =
0+6+2√

0+1+4
√

1+36+1
=

8√
38
√

5
= .58 (19.18)

The model correctly predicts that information is closer to digital than it is to
apricot. Fig. 19.10 shows a visualization.

1 2 3 4 5 6 7

1

2

3

digital

apricot
information

D
im

en
si

on
 1

: ‘
la

rg
e’

Dimension 2: ‘data’

Figure 19.10 A graphical demonstration of the cosine measure of similarity, showing vec-
tors for three words (apricot, digital, and information) in the two dimensional space defined
by counts of the words data and large in the neighborhood. Note that the angle between
digital and information is smaller than the angle between apricot and information.

Fig. 19.11 uses clustering of vectors as a way to visualize what words are most
similar to other ones (Rohde et al., 2006).

Rohde, Gonnerman, Plaut Modeling Word Meaning Using Lexical Co-Occurrence

HEAD

HANDFACE

DOG

AMERICA

CAT

EYE

EUROPE

FOOT

CHINA
FRANCE

CHICAGO

ARM

FINGER

NOSE

LEG

RUSSIA

MOUSE

AFRICA

ATLANTA

EAR

SHOULDER

ASIA

COW

BULL

PUPPY LION

HAWAII

MONTREAL

TOKYO

TOE

MOSCOW

TOOTH

NASHVILLE

BRAZIL

WRIST

KITTEN

ANKLE

TURTLE

OYSTER

Figure 8: Multidimensional scaling for three noun classes.

WRIST
ANKLE

SHOULDER
ARM
LEG
HAND

FOOT
HEAD
NOSE
FINGER

TOE
FACE
EAR
EYE

TOOTH
DOG
CAT

PUPPY
KITTEN

COW
MOUSE

TURTLE
OYSTER

LION
BULL
CHICAGO
ATLANTA

MONTREAL
NASHVILLE

TOKYO
CHINA
RUSSIA
AFRICA
ASIA
EUROPE
AMERICA

BRAZIL
MOSCOW

FRANCE
HAWAII

Figure 9: Hierarchical clustering for three noun classes using distances based on vector correlations.

20

Figure 19.11 Using hierarchical clustering to visualize 4 noun classes from the embeddings
produced by Rohde et al. (2006). These embeddings use a window size of ±4, and 14,000
dimensions, with 157 closed-class words removed. Rather than PPMI, these embeddings
compute each cell via the positive correlation (the correlation between word pairs, with neg-
ative values replaced by zero), followed by a square root. This visualization uses hierarchical
clustering, with correlation as the similarity function. From Rohde et al. (2006).

12 CHAPTER 19 • VECTOR SEMANTICS

19.3.1 Alternative Similarity Metrics
There are alternatives to the cosine metric for measuring similarity. The JaccardJaccard

(Jaccard 1908, Jaccard 1912) measure, originally designed for binary vectors, was
extended by Grefenstette (1994) to vectors of weighted associations as follows:

simJaccard(~v,~w) =
∑N

i=1 min(vi,wi)∑N
i=1 max(vi,wi)

(19.19)

The numerator of the Grefenstette/Jaccard function uses the min function, es-
sentially computing the (weighted) number of overlapping features (since if either
vector has a zero association value for an attribute, the result will be zero). The
denominator can be viewed as a normalizing factor.

The Dice measure, was similarly extended from binary vectors to vectors ofDice

weighted associations; one extension from Curran (2003) uses the Jaccard numerator
but uses as the denominator normalization factor the total weighted value of non-
zero entries in the two vectors.

simDice(~v,~w) =
2×
∑N

i=1 min(vi,wi)∑N
i=1(vi +wi)

(19.20)

PMI(w, f) = log2
P(w, f)

P(w)P(f) (19.4)

t-test(w, f) = P(w, f)−P(w)P(f)√
P(f)P(w)

(19.13)

cosine(~v,~w) = ~v·~w
|~v||~w| =

∑N
i=1 vi×wi√∑N

i=1 v2
i

√∑N
i=1 w2

i

(19.17)

Jaccard(~v,~w) =
∑N

i=1 min(vi,wi)∑N
i=1 max(vi,wi)

(19.19)

Dice(~v,~w) =
2×

∑N
i=1 min(vi,wi)∑N
i=1(vi+wi)

(19.20)

JS(~v||~w) = D(~v|~v+~w
2)+D(~w|~v+~w

2) (19.23)

Figure 19.12 Defining word similarity: measures of association between a target word w
and a feature f = (r,w′) to another word w′, and measures of vector similarity between word
co-occurrence vectors~v and ~w.

Finally, there is a family of information-theoretic distributional similarity mea-
sures (Pereira et al. 1993, Dagan et al. 1994, Dagan et al. 1999, Lee 1999). The
intuition of these models is that if two vectors, ~v and ~w, each express a probability
distribution (their values sum to one), then they are are similar to the extent that these
probability distributions are similar. The basis of comparing two probability distri-
butions P and Q is the Kullback-Leibler divergence or KL divergence or relativeKL divergence

entropy (Kullback and Leibler, 1951):

D(P||Q) =
∑

x

P(x) log
P(x)
Q(x)

(19.21)

Unfortunately, the KL-divergence is undefined when Q(x) = 0 and P(x) 6= 0,
which is a problem since these word-distribution vectors are generally quite sparse.

19.4 • USING SYNTAX TO DEFINE A WORD’S CONTEXT 13

One alternative (Lee, 1999) is to use the Jenson-Shannon divergence, which repre-
Jenson-

Shannon
divergence

sents the divergence of each distribution from the mean of the two and doesn’t have
this problem with zeros.

JS(P||Q) = D(P|P+Q
2

)+D(Q|P+Q
2

) (19.22)

Rephrased in terms of vectors~v and ~w,

simJS(~v||~w) = D(~v|~v+~w
2

)+D(~w|~v+~w
2

) (19.23)

Figure 19.12 summarizes the measures of association and of vector similarity
that we have designed. See the Historical Notes section for a summary of other
vector similarity measures.

19.4 Using syntax to define a word’s context

Instead of defining a word’s context by nearby words, we could instead define it by
the syntactic relations of these neighboring words. This intuition was first suggested
by Harris (1968), who pointed out the relation between meaning and syntactic com-
binatory possibilities:

The meaning of entities, and the meaning of grammatical relations among
them, is related to the restriction of combinations of these entities rela-
tive to other entities.

Consider the words duty and responsibility. The similarity between the mean-
ings of these words is mirrored in their syntactic behavior. Both can be modified by
adjectives like additional, administrative, assumed, collective, congressional, con-
stitutional, and both can be the direct objects of verbs like assert, assign, assume,
attend to, avoid, become, breach (Lin and Pantel, 2001).

In other words, we could define the dimensions of our context vector not by the
presence of a word in a window, but by the presence of a word in a particular de-
pendency (or other grammatical relation), an idea first worked out by Hindle (1990).
Since each word can be in a variety of different dependency relations with other
words, we’ll need to augment the feature space. Each feature is now a pairing of
a word and a relation, so instead of a vector of |V | features, we have a vector of
|V |×R features, where R is the number of possible relations. Figure 19.13 shows a
schematic early example of such a vector, taken from Lin (1998), showing one row
for the word cell. As the value of each attribute we have shown the raw frequency
of the feature co-occurring with cell.

An alternative to augmenting the feature space is to use the dependency paths just
as a way to accumulate feature counts, but continue to have just |V | dimensions of
words. The value for a context word dimension, instead of counting all instances of
that word in the neighborhood of the target word, counts only words in a dependency
relationship with the target word. More complex models count only certain kinds of
dependencies, or weigh the counts based on the length of the dependency path (Padó
and Lapata, 2007). And of course we can use PPMI or other weighting schemes to
weight the elements of these vectors rather than raw frequency.

14 CHAPTER 19 • VECTOR SEMANTICS

su
bj

-o
f,

ab
so

rb

su
bj

-o
f,

ad
ap

t

su
bj

-o
f,

be
ha

ve
... po

bj
-o

f,
in

si
de

po
bj

-o
f,

in
to

... nm
od

-o
f,

ab
no

rm
al

ity

nm
od

-o
f,

an
em

ia

nm
od

-o
f,

ar
ch

ite
ct

ur
e

... ob
j-

of
,a

tta
ck

ob
j-

of
,c

al
l

ob
j-

of
,c

om
e

fr
om

ob
j-

of
,d

ec
or

at
e

... nm
od

,b
ac

te
ri

a

nm
od

,b
od

y

nm
od

,b
on

e
m

ar
ro

w

cell 1 1 1 16 30 3 8 1 6 11 3 2 3 2 2
Figure 19.13 Co-occurrence vector for the word cell, from Lin (1998), showing grammat-
ical function (dependency) features. Values for each attribute are frequency counts from a
64-million word corpus, parsed by an early version of MINIPAR.

19.5 Dense Vectors via SVD

Until this point in the chapter, we have been representing words with vectors that
are both long (length |V |, with vocabularies of 20,000 to 50,000) and sparse, with
most elements of the vector for each word equal to zero.

In the next two sections we turn to an alternative family of methods of represent-
ing a word: the use of vectors that are short (of length perhaps 50-1000) and dense
(most values are non-zero).

Short vectors have a number of potential advantages. First, they are easier
to include as features in machine learning systems; for example if we use 100-
dimensional word embeddings as features, a classifier can just learn 100 weights to
represent a function of word meaning, instead of having to learn tens of thousands of
weights for each of the sparse dimensions. Because they contain fewer parameters
than sparse vectors of explicit counts, dense vectors may generalize better and help
avoid overfitting. And dense vectors may do a better job of capturing synonymy
than sparse vectors. For example, car and automobile are synonyms; but in a typical
sparse vectors representation, the car dimension and the automobile dimension are
distinct dimensions. Because the relationship between these two dimensions is not
modeled, sparse vectors may fail to capture the similarity between a word with car
as a neighbor and a word with automobile as a neighbor.

In this section we introduce the classic method for generating dense vectors: sin-
gular value decomposition, or SVD. In the next section we introduce the commonly
used neural predictive models CBOW and skip-grams.

Singular Value Decomposition (SVD) is a method for finding the most important
dimensions of a data set, those dimensions along which the data varies the most. It
can be applied to any rectangular matrix.

In language processing SVD was first applied to the task of generating embed-
dings from term-document matrices by Deerwester et al. (1988) in a model called
Latent Semantic Indexing or Latent Semantic Analysis (LSA).

Latent
Semantic
Analysis

SVD is part of a family of methods that can approximate an N-dimensional
dataset using fewer dimensions, including Principle Components Analysis (PCA),
Factor Analysis, and so on. In general, dimensionality reduction methods first ro-
tate the axes of the original dataset into a new space. The new space is chosen so that
the highest order dimension captures the most variance in the original dataset, the
next dimension captures the next most variance, and so on. Fig. 19.14 shows a visu-
alization. A set of points (vectors) in two dimensions is rotated so that the first new
dimension captures the most variation in the data. In this new space, we can rep-

19.5 • DENSE VECTORS VIA SVD 15

resent data with a smaller number of dimensions (for example using one dimension
instead of two) and still capture much of the variation in the original data.

Original Dimension 1

O
rig

in
al

 D
im

en
sio

n
2

PCA dimensio
n 1PCA dimension 2

Original Dimension 1

O
rig

in
al

 D
im

en
sio

n
2

PCA dimension 1

PC
A

di
m

en
si

on
 2

(a) (b) (c)

Figure 19.14 Visualizing principle components analysis: Given original data (a) find the
rotation of the data (b) such that the first dimension captures the most variation, and the
second dimension is the one orthogonal to the first that captures the next most variation. Use
this new rotated space to represent each point (c).

19.5.1 Latent Semantic Analysis
The use of SVD as a way to reduce large sparse vector spaces for word meaning,
like the vector space model itself, was first applied in the context of information
retrieval, briefly called latent semantic indexing (LSI) (Deerwester et al., 1988) but
most frequently referred to as LSA (latent semantic analysis) (Deerwester et al.,LSA

1990).
LSA is a particular application of SVD to a |V | × c term-document matrix X

representing |V | words and their co-occurrence with c documents or contexts. SVD
factorizes any such rectangular |V |× c matrix X into the product of three matrices
W , Σ, and CT . In the |V |×m matrix W , each of the w rows still represents a word,
but the columns do not; each column now represents one of m dimensions in a latent
space, such that the m column vectors are orthogonal to each other and the columns
are ordered by the amount of variance in the original dataset each accounts for. The
number of such dimensions m is the rank of X (the rank of a matrix is the number
of linearly independent rows). Σ is a diagonal m×m matrix, with singular values
along the diagonal, expressing the importance of each dimension. The m× c matrix
CT still represents documents or contexts, but each row now represents one of the
new latent dimensions and the m row vectors are orthogonal to each other.

By using only the first k dimensions, of W, Σ, and C instead of all m dimensions,
the product of these 3 matrices becomes a least-squares approximation to the orig-
inal X . Since the first dimensions encode the most variance, one way to view the
reconstruction is thus as modeling the most important information in the original
dataset.

Using only the top k dimensions (corresponding to the k most important singular
values), leads to a reduced |V |×k matrix Wk, with one k-dimensioned row per word.
This row now acts as a dense k-dimensional vector (embedding) representing that
word, substituting for the very high-dimensional rows of the original X .

LSA embeddings generally set k=300, so these embeddings are relatively short
by comparison to other dense embeddings.

Instead of PPMI or tf-idf weighting on the original term-document matrix, LSA
implementations generally use a particular weighting of each co-occurrence cell that

16 CHAPTER 19 • VECTOR SEMANTICS

SVD applied to co-occurrence matrix X:
X

|V |× c

=

W

|V |×m

σ1 0 0 . . . 0
0 σ2 0 . . . 0
0 0 σ3 . . . 0
...

...
...

. . .
...

0 0 0 . . . σm

m×m

 C

m× c

Taking only the top k,k ≤ m dimensions after the SVD is applied to the co-
occurrence matrix X:

X

|V |× c

=

Wk

|V |× k

σ1 0 0 . . . 0
0 σ2 0 . . . 0
0 0 σ3 . . . 0
...

...
...

. . .
...

0 0 0 . . . σk

k× k

[
C

]
k× c

Figure 19.15 SVD factors a matrix X into a product of three matrices, W, Σ, and C. Taking
the first k dimensions gives a |V |×k matrix Wk that has one k-dimensioned row per word that
can be used as an embedding.

multiplies two weights called the local and global weights for each cell (i, j)—term
i in document j. The local weight of each term i is its log frequency: log f (i, j)+1

The global weight of term i is a version of its entropy: 1+
∑

j p(i, j) log p(i, j)
logndocs .

LSA has also been proposed as a cognitive model for human language use (Lan-
dauer and Dumais, 1997) and applied to a wide variety of NLP applications; see the
end of the chapter for details.

19.5.2 SVD applied to word-context matrices

Instead of applying SVD to the term-document matrix (as in the LSA algorithm of
the previous section), an alternative that is widely practiced is to apply SVD instead
to the word-word or word-context matrix. In this version the context dimensions are
words rather than documents, an idea first proposed by Schütze (1992).

The mathematics is identical to what is described in Fig. 19.15: SVD factorizes
the word-context matrix X into three matrices W , Σ, and CT . The only different is
that we are starting from a PPMI-weighted word-word matrix, instead of a term-
document matrix.

Once again only the top k dimensions are retained (corresponding to the k most
important singular values), leading to a reduced |V | × k matrix Wk, with one k-
dimensioned row per word. Just as with LSA, this row acts as a dense k-dimensional
vector (embedding) representing that word. The other matrices (Σ and C) are simply

19.5 • DENSE VECTORS VIA SVD 17

thrown away. 3

This use of just the top dimensions, whether for a term-document matrix like
LSA, or for a term-term matrix, is called truncated SVD. Truncated SVD is pa-truncated SVD

rameterized by k, the number of dimensions in the representation for each word,
typically ranging from 500 to 5000. Thus SVD run on term-context matrices tends
to use many more dimension than the 300-dimensional embeddings produced by
LSA. This different presumably has something to do with the different in granular-
ity; LSA counts for words are much coarser-grained, counting the co-occurrences
in an entire document, while word-context PPMI matrices count words in a small
window. Generally the dimensions we keep are the highest-order dimensions, al-
though for some tasks, it helps to throw out a small number of the most high-order
dimensions, such as the first 1 or even the first 50 (Lapesa and Evert, 2014).

X W
S C

=

w ⨉ c w ⨉ m

m ⨉ m m ⨉ c

W
S C

w ⨉ m

m ⨉ m m ⨉ c

k

k k k

1) SVD

2) Truncation:

3) Embeddings:

w ⨉ k

1…….k

1
2
.
.
i
.
w

embedding for word i:

Wk

≈

S C

word-word
PPMI matrix

Figure 19.16 Sketching the use of SVD to produce a dense embedding of dimensionality k
from a sparse PPMI matrix of dimensionality c. The SVD is used to factorize the word-word
PPMI matrix into a W , Σ, and C matrix. The Σ and C matrices are discarded, and the W matrix
is truncated giving a matrix of k-dimensionality embedding vectors for each word.

Fig. 19.16 shows a high-level sketch of the entire SVD process. The dense em-
beddings produced by SVD sometimes perform better than the raw PPMI matrices
on semantic tasks like word similarity. Various aspects of the dimensionality reduc-
tion seem to be contributing to the increased performance. If low-order dimensions
represent unimportant information, the truncated SVD may be acting to removing
noise. By removing parameters, the truncation may also help the models generalize
better to unseen data. When using vectors in NLP tasks, having a smaller number of
dimensions may make it easier for machine learning classifiers to properly weight
the dimensions for the task. And as mentioned above, the models may do better at

3 Some early systems weighted Wk by the singular values, using the product Wk ·Σk as an embedding
instead of just the matrix Wk , but this weighting leads to significantly worse embeddings and is not
generally used (Levy et al., 2015).

18 CHAPTER 19 • VECTOR SEMANTICS

capturing higher order co-occurrence.
Nonetheless, there is a significant computational cost for the SVD for a large co-

occurrence matrix, and performance is not always better than using the full sparse
PPMI vectors, so for many applications the sparse vectors are the right approach.
Alternatively, the neural embeddings we discuss in the next section provide a popular
efficient solution to generating dense embeddings.

19.6 Embeddings from prediction: Skip-gram and CBOW

A second method for generating dense embeddings draws its inspiration from the
neural network models used for language modeling. Recall from Chapter 5 that
neural network language models are given a word and predict context words. This
prediction process can be used to learn embeddings for each target word. The intu-
ition is that words with similar meanings often occur near each other in texts. The
neural models therefore learn an embedding by starting with a random vector and
then iteratively making a word’s embeddings more like the embeddings of neighbor-
ing words, and less like the embeddings of words that don’t occur nearby.

Although the metaphor for this architecture comes from word prediction, we’ll
see that the process for learning these neural embeddings actually has a strong re-
lationship to PMI co-occurrence matrices, SVD factorization, and dot-product simi-
larity metrics.

The most popular family of methods is referred to as word2vec, after the soft-word2vec

ware package that implements two methods for generating dense embeddings: skip-
gram and CBOW (continuous bag of words) (Mikolov et al. 2013, Mikolov et al. 2013a).skip-gram

CBOW Like the neural language models, the word2vec models learn embeddings by training
a network to predict neighboring words. But in this case the prediction task is not the
main goal; words that are semantically similar often occur near each other in text,
and so embeddings that are good at predicting neighboring words are also good at
representing similarity. The advantage of the word2vec methods is that they are fast,
efficient to train, and easily available online with code and pretrained embeddings.

We’ll begin with the skip-gram model. Like the SVD model in the previous
section, the skip-gram model actually learns two separate embeddings for each word
w: the word embedding v and the context embedding c. These embeddings areword

embedding
context

embedding encoded in two matrices, the word matrix W and the context matrix C. Each row i
of the word matrix W is the 1×d vector embedding vi for word i in the vocabulary.
Each column i of the context matrix C is a d× 1 vector embedding ci for word i
in the vocabulary. Fig. 19.17 shows a representation of these two embeddings, in
which the word matrix and context matrix use different vocabularies Vw and Vc. For
the remainder of the chapter, however we’ll simplify by assuming the two matrices
share the same vocabulary, which we’ll just call V .

The skip-gram model predicts each neighboring word in a context window of
2L words from the current word. So for a context window L = 2 the context is
[wt−2,wt−1,wt+1,wt+2] and we are predicting each of these from word wt .

Fig. 19.18 sketches the architecture for a sample context L = 1.
Let’s consider the prediction task. We are walking through a corpus of length T

and currently pointing at the tth word w(t), whose index in the vocabulary is j, so
we’ll call it w j (1 < j < |V |). Let’s consider predicting one of the 2L context words,
for example w(t+1), whose index in the vocabulary is k (1 < k < |V |). Hence our task

19.6 • EMBEDDINGS FROM PREDICTION: SKIP-GRAM AND CBOW 19

|Vw| ⨉ d

1……..d
1
2
.
.
i
.

|Vw|

W
1
2
.
.
j
.
|Vc|

C
target word embedding

for word i

|Vc| ⨉ d

context word embedding
for word j

1……..d

Figure 19.17 The word matrix W and context matrix C (with embeddings shown as row
vectors) learned by the skipgram model.

Input layer Projection layer

Output layer

W
|V|⨉d

wt

wt-1

wt+1

1-hot input vector

1⨉d1⨉|V|

embedding for wt

probabilities of
context words

C d ⨉ |V|

C d ⨉ |V|

x1
x2

xj

x|V|

y1
y2

yk

y|V|

y1
y2

yk

y|V|

Figure 19.18 The skip-gram model (Mikolov et al. 2013, Mikolov et al. 2013a).

is to compute P(wk|w j).
We begin with an input vector x, which is a one-hot vector for the current wordone-hot

w j. A one-hot vector is just a vector that has one element equal to 1, and all the other
elements are set to zero. Thus in a one-hot representation for the word w j, x j = 1,
and xi = 0 ∀i 6= j, as shown in Fig. 19.19.

0 0 0 0 0 … 0 0 0 0 1 0 0 0 0 0 … 0 0 0 0

w0 wj w|V|w1

Figure 19.19 A one-hot vector, with the dimension corresponding to word w j set to 1.

We then predict the probability of each of the 2C output words—in Fig. 19.18
that means the two output words wt−1 and wt+1— in 3 steps:

1. Select the embedding from W: x is multiplied by W , the input matrix, to give
the hidden or projection layer. Since each column of the input matrix W isprojection layer

just an embedding for word wt , and the input is a one-hot vector for w j, the
projection layer for input x will be h = v j, the input embedding for w j.

20 CHAPTER 19 • VECTOR SEMANTICS

2. Compute the dot product v j · ck: For each of the 2C context words we now
multiply the projection vector h by the context matrix C. The result for each
context word, o =Ch, is a 1×|V | dimensional output vector giving a score for
each of the |V | vocabulary words. In doing so, the element ok was computed
by multiplying h by the output embedding for word wk: ok = ck ·h = ck · v j.

3. Normalize the dot products into probabilities: For each context word we
normalize this vector of dot product scores, turning each score element ok into
a probability by using the soft-max function:

p(wk|w j) =
exp(ck · v j)∑

i∈|V | exp(ci · v j)
(19.24)

In summary, the skip-gram computes the probability p(wk|w j) by just taking the
dot product between the word vector for j (v j) and the context vector for k (ck). We
then turn this dot product v j · ck into a probability by passing it through a softmax
function.

19.6.1 Learning the word and context embeddings
We already mentioned the intuition for learning the word embedding matrix W and
the context embedding matrix C: iteratively make the embeddings for a word more
like the embeddings of its neighbors and less like the embeddings of other words.
This section offers a brief sketch of how this works in a version of the skip-gram
algorithm called skip-gram with negative sampling. In the training phase, the al-
gorithm walks through the corpus, at each target word choosing the surrounding
context words as positive examples, and for each positive example also choosing k
noise samples or negative samples: non-neighbor words. The goal will be to movenegative

samples
the embeddings toward the neighbor words and away from the noise words.

For example, in walking through the example text below we come to the word
apricot, and let L = 2 so we have 4 context words c1 through c4:

lemon, a [tablespoon of apricot preserves or] jam

c1 c2 w c3 c4

The goal is to learn an embedding whose dot product with each context word
is high. In practice skip-gram uses a sigmoid function σ of the dot product, where
σ(x) = 1

1+ex . So for the above example we want σ(c1 ·w)+σ(c2 ·w)+σ(c3 ·w)+
σ(c4 ·w) to be high.

In addition, for each context word the algorithm chooses k noise words according
to their unigram frequency. If we let k = 2, for each target/context pair, we’ll have 2
noise words for each of the 4 context words:

[cement metaphysical dear coaxial apricot attendant whence forever puddle]

n1 n2 n3 n4 n5 n6 n7 n8

We’d like these noise words n to have a low dot-product with our target embed-
ding w; in other words we want σ(n1 ·w)+σ(n2 ·w)+ ...+σ(n8 ·w) to be low.

More formally, the learning objective for one word/context pair (w,c) is

logσ(w · c)+
k∑

i=1

Ewi∼p(w) [logσ(w ·wi)] (19.25)

That is, we want to maximize the dot product of the word with the actual context
word, and minimize the dot products of the word with the k negative sampled non-
neighbor words. The noise words wi are sampled from the vocabulary V according

19.6 • EMBEDDINGS FROM PREDICTION: SKIP-GRAM AND CBOW 21

to their weighted unigram probability; in practice rather than p(w) it is common to
use the weighting p

3
4 (w).

The learning algorithm starts with randomly initialized W and C matrices, and
then walks through the training corpus moving W and C so as to maximize the objec-
tive in Eq. 19.25. An algorithm like stochastic gradient descent is used to iteratively
shift each value so as to maximize the objective, using error backpropagation to
propagate the gradient back through the network as described in Chapter 5 (Mikolov
et al., 2013a).

Note that the learning objective in Eq. 19.25 is not the same as the p(wk|w j)
defined in Eq. 19.24. Nonetheless, although negative sampling is a different objec-
tive than the probability objective, and so the resulting dot products will not produce
optimal predictions of upcoming words, it seems to produce good embeddings, and
that’s the goal we care about.

19.6.2 Properties of the embeddings
There is an interesting relationship between skip-grams, SVD/LSA, and PPMI. If
we multiply the two context matrices W ·CT , we produce a |V |× |V | matrix X , each
entry xi j corresponding to some association between input word i and context word
j. Levy and Goldberg (2014b) proves that skip-gram’s optimal value occurs when
this learned matrix is actually a version of the PMI matrix, with the values shifted
by k:

W ·CT = XPMI− logk (19.26)

In other words, skip-gram is implicitly factorizing a (shifted version of the) PMI
matrix into the two embedding matrices W and C, just as SVD did, albeit with a
different kind of factorization. See Levy and Goldberg (2014b) for more details.

Once the embeddings are learned, we’ll have two embeddings for each word wi:
vi and ci. We can choose to throw away the C matrix and just keep W , as we did
with SVD, in which case each word i will be represented by the vector vi.

Alternatively we can add the two embeddings together, using the summed em-
bedding vi + ci as the new d-dimensional embedding, or we can concatenate them
into an embedding of dimensionality 2d.

As with the simple count-based methods like PPMI, the context window size L
effects the performance of skip-gram embeddings, and experiments often tune the
parameter L on a dev set. As as with PPMI, window sizing leads to qualitative
differences: smaller windows capture more syntactic information, larger ones more
semantic and relational information. One difference from the count-based methods
is that for skip-grams, the larger the window size the more computation the algorithm
requires for training (more neighboring words must be predicted). See the end of the
chapter for a pointer to surveys which have explored parameterizations like window-
size for different tasks.

19.6.3 CBOW
The CBOW (continuous bag of words) model is roughly the mirror image of the
skip-gram model. Like skip-grams, it is based on a predictive model, but this time
predicting the current word wt from the context window of 2L words around it, e.g.
for L = 2 the context is [wt−2,wt−1,wt+1,wt+2] Fig. 19.20 sketches the architecture.

The algorithm is very similar to the skip-gram model except in the computation
of the projection layer h. CBOW similarly learns two d-dimensional embeddings

22 CHAPTER 19 • VECTOR SEMANTICS

Input layer

Projection layer Output layer

C
|V|⨉d

wt

wt-1

wt+1

1-hot input vectors
for each context word

1⨉d

1⨉|V|

sum of embeddings
 for context words

probability of wt

W d ⨉ |V|

x1
x2

xj

x|V|

y1
y2

yk

y|V|

x1
x2

xj

x|V|

C
|V|⨉d

Figure 19.20 The CBOW architecture (Mikolov et al. 2013, Mikolov et al. 2013a).

for each word w: the word embedding v and the context embedding c, encoded in
the word matrix W and the context matrix C.

In CBOW we predict the word wt from the context words. Let’s assume L=1.
We are walking through a corpus of length T and currently pointing at the tth word
wt , whose index in the vocabulary is j, so we’ll call it w j (1 < j < |V |). We want
to predict w j from predicting one of the 2L context words, for example wt+1, whose
index in the vocabulary is k (1 < k < |V |). Hence our task is, like skip-grams, to
compute P(wk|w j).

The input layer is connected to the projection layer by a |V |× d context matrix
C, each of whose |V | rows represents a context word embedding. But now this input
matrix is repeated between each one-hot input and the projection layer h. For the
case of L = 1, these two embeddings must be combined into the projection layer,
which is done by multiplying each one-hot context vector x by C to give us two
context vectors (let’s say ci and c j). We then average these vectors

h =C · 1
2L

∑
−L≤ j≤L, j 6=0

c(j) (19.27)

The projection vector h is multiplied by the word matrix W . The result o =Wh
is a 1×|V | dimensional output vector giving a score for each of the |V | words. In
doing so, the element ok was computed by multiplying h by the word embedding vk
for word wk: ok = vkh. Finally we normalize this score vector, turning the score for
each element ok into a probability by using the soft-max function.

While CBOW and skip-gram are similar algorithms and produce similar embed-
dings, they do have slightly different behavior, and often one of them will turn out
to be the better choice for any particular task.

19.7 • PROPERTIES OF EMBEDDINGS 23

19.7 Properties of embeddings

We’ll discuss in Section 19.8 how to evaluate the quality of different embeddings.
But it is also sometimes helpful to visualize them. Fig. 19.21 shows the words/phrases
that are most similar to some sample words using the phrase-based version of the
skip-gram algorithm (Mikolov et al., 2013a).

target: Redmond Havel ninjutsu graffiti capitulate
Redmond Wash. Vaclav Havel ninja spray paint capitulation
Redmond Washington president Vaclav Havel martial arts graffiti capitulated
Microsoft Velvet Revolution swordsmanship taggers capitulating

Figure 19.21 Examples of the closest tokens to some target words using a phrase-based
extension of the skip-gram algorithm (Mikolov et al., 2013a).

One semantic property of various kinds of embeddings that may play in their
usefulness is their ability to capture relational meanings

Mikolov et al. (2013b) demonstrates that the offsets between vector embeddings
can capture some relations between words, for example that the result of the ex-
pression vector(‘king’) - vector(‘man’) + vector(‘woman’) is a vector close to vec-
tor(‘queen’); the left panel in Fig. 19.22 visualizes this by projecting a representation
down into 2 dimensions. Similarly, they found that the expression vector(‘Paris’)
- vector(‘France’) + vector(‘Italy’) results in a vector that is very close to vec-
tor(‘Rome’). Levy and Goldberg (2014a) shows that various other kinds of em-
beddings also seem to have this property.

Figure 19.22 Vector offsets showing relational properties of the vector space, shown by
projecting vectors onto two dimensions using PCA. In the left panel, ’king’ - ’man’ + ’woman’
is close to ’queen’. In the right, we see the way offsets seem to capture grammatical number.
(Mikolov et al., 2013b).

19.8 Evaluating Vector Models

Of course the most important evaluation metric for vector models is extrinsic eval-
uation on tasks; adding them as features into any NLP task and seeing whether this
improves performance.

Nonetheless it is useful to have intrinsic evaluations. The most common met-
ric is to test their performance on similarity, and in particular on computing the
correlation between an algorithm’s word similarity scores and word similarity rat-
ings assigned by humans. The various sets of human judgments are the same as we

24 CHAPTER 19 • VECTOR SEMANTICS

described in Chapter 16 for thesaurus-based similarity, summarized here for conve-
nience. WordSim-353 (Finkelstein et al., 2002) is a commonly used set of of ratings
from 0 to 10 for 353 noun pairs; for example (plane, car) had an average score of
5.77. SimLex-999 (Hill et al., 2015) is a more difficult dataset that quantifies sim-
ilarity (cup, mug) rather than relatedness (cup, coffee), and including both concrete
and abstract adjective, noun and verb pairs. The TOEFL dataset is a set of 80 ques-
tions, each consisting of a target word with 4 additional word choices; the task is to
choose which is the correct synonym, as in the example: Levied is closest in mean-
ing to: imposed, believed, requested, correlated (Landauer and Dumais, 1997). All
of these datasets present words without context.

Slightly more realistic are intrinsic similarity tasks that include context. The
Stanford Contextual Word Similarity (SCWS) dataset (Huang et al., 2012) offers a
richer evaluation scenario, giving human judgments on 2,003 pairs of words in their
sentential context, including nouns, verbs, and adjectives. This dataset enables the
evaluation of word similarity algorithms that can make use of context words. The
semantic textual similarity task (Agirre et al. 2012, Agirre et al. 2015) evaluates the
performance of sentence-level similarity algorithms, consisting of a set of pairs of
sentences, each pair with human-labeled similarity scores.

Another task used for evaluate is an analogy task, where the system has to solve
problems of the form a is to b as c is to d, given a, b, and c and having to find d.
The system is given two words that participate in a relation (for example Athens and
Greece, which participate in the capital relation) and a word like Oslo and must find
the word Norway. Or more syntactically-oriented examples: given mouse, mice, and
dollar the system must return dollars. Large sets of such tuples have been created
(Mikolov et al. 2013, Mikolov et al. 2013b).

19.9 Summary

• The term-document matrix, first created for information retrieval, has rows
for each word (term) in the vocabulary and a column for each document. The
cell specify the count of that term in the document.

• The word-context (or word-word, or term-term) matrix has a row for each
(target) word in the vocabulary and a column for each context term in the
vocabulary. Each cell indicates the number of times the context term occurs
in a window (of a specified size) around the target word in a corpus.

• A common weighting for the Instead of using the raw word word co-occurrence
matrix, it is often weighted. A common weighting is positive pointwise mu-
tual information or PPMI.

• Alternative weightings are tf-idf, used for information retrieval task, and significance-
based methods like t-test.

• PPMI and other versions of the word-word matrix can be viewed as offering
high-dimensional vector representations of words that are sparse (since most
values are 0).

• The cosine of two vectors is a common function used for word similarity.

• Singular Value Decomposition (SVD) is a dimensionality technique that can
be used to create lower-dimensional embeddings from a full term-term or
term-document matrix.

BIBLIOGRAPHICAL AND HISTORICAL NOTES 25

• Latent Semantic Analysis is an application of SVD to the term-document
matrix, using particular weightings and resulting in embeddings of about 300
dimensions.

• Two algorithms inspired by neural language models, skip-gram and CBOW,
are popular efficient ways to compute embeddings. They learn embeddings (in
a way initially inspired from the neural word prediction literature) by finding
embeddings that have a high dot-product with neighboring words and a low
dot-product with noise words.

Bibliographical and Historical Notes
Models of distributional word similarity arose out of research in linguistics and psy-
chology of the 1950s. The idea that meaning was related to distribution of words
in context was widespread in linguistic theory of the 1950s; even before the well-
known Firth (1957) and Harris (1968) dictums discussed earlier, Joos (1950) stated
that

the linguist’s “meaning” of a morpheme. . . is by definition the set of conditional
probabilities of its occurrence in context with all other morphemes.

The related idea that the meaning of a word could be modeled as a point in a
Euclidean space and that the similarity of meaning between two words could be
modeled as the distance between these points was proposed in psychology by Os-
good et al. (1957).

The application of these ideas in a computational framework was first made by
Sparck Jones (1986) and became a core principle of information retrieval, whence it
came into broader use in language processing.

The idea of defining words by a vector of discrete features has a venerable history
in our field, with roots at least as far back Descartes and Leibniz (Wierzbicka 1992,
Wierzbicka 1996). By the middle of the 20th century, beginning with the work of
Hjelmslev (Hjelmslev, 1969) and fleshed out in early models of generative grammar
(Katz and Fodor, 1963), the idea arose of representing meaning with semantic fea-
tures, symbols that represent some sort of primitive meaning. For example wordssemantic

feature
like hen, rooster, or chick, have something in common (they all describe chickens)
and something different (their age and sex), representable as:

hen +female, +chicken, +adult

rooster -female, +chicken, +adult
chick +chicken, -adult

The dimensions used by vector models of meaning to define words are only ab-
stractly related to these small fixed number of hand-built dimensions. Nonetheless,
there has been some attempt to show that certain dimensions of embedding mod-
els do contribute some specific compositional aspect of meaning like these early
semantic features.

Turney and Pantel (2010) is an excellent and comprehensive survey of vector
semantics.

There are a wide variety of other weightings and methods for word similarity.
The largest class of methods not discussed in this chapter are the variants to and
details of the information-theoretic methods like Jensen-Shannon divergence, KL-
divergence and α-skew divergence that we briefly introduced (Pereira et al. 1993,

26 CHAPTER 19 • VECTOR SEMANTICS

Dagan et al. 1994, Dagan et al. 1999, Lee 1999, Lee 2001). Manning and Schütze
(1999, Chapters 5 and 8) give collocation measures and other related similarity mea-
sures.

The use of SVD as a way to reduce large sparse vector spaces for word mean-
ing, like the vector space model itself, was first applied in the context of information
retrieval, briefly as latent semantic indexing (LSI) (Deerwester et al., 1988) and
then afterwards as LSA (latent semantic analysis) (Deerwester et al., 1990). LSALSA

was based on applying SVD to the term-document matrix (each cell weighted by log
frequency and normalized by entropy), and then using generally the top 300 dimen-
sions as the embedding. Landauer and Dumais (1997) summarizes LSA as a cog-
nitive model. LSA was then quickly applied to a wide variety of NLP applications:
spell checking (Jones and Martin, 1997), language modeling (Bellegarda 1997, Coc-
caro and Jurafsky 1998, Bellegarda 2000) morphology induction (Schone and Juraf-
sky 2000, Schone and Jurafsky 2001), and essay grading (Rehder et al., 1998).

The idea of SVD on the term-term matrix (rather than the term-document matrix)
as a model of meaning for NLP was proposed soon after LSA by Schütze (1992).
Schütze applied the low-rank (97-dimensional) embeddings produced by SVD to the
task of word sense disambiguation, analyzed the resulting semantic space, and also
suggested possible techniques like dropping high-order dimensions. See Schütze
(1997).

A number of alternative matrix models followed on from the early SVD work,
including Probabilistic Latent Semantic Indexing (PLSI) (Hofmann, 1999) Latent
Dirichlet Allocation (LDA) (Blei et al., 2003). Nonnegative Matrix Factorization
(NMF) (Lee and Seung, 1999).

Neural networks were used as a tool for language modeling by Bengio et al.
(2003) and Bengio et al. (2006), and extended to recurrent net language models in
Mikolov et al. (2011). Collobert and Weston (2007), Collobert and Weston (2008),
and Collobert et al. (2011) is a very influential line of work demonstrating that em-
beddings could play a role as the first representation layer for representing word
meanings for a number of NLP tasks. The idea of simplifying the hidden layer of
these neural net language models to create the skip-gram and CBOW algorithms
was proposed by Mikolov et al. (2013). The negative sampling training algorithm
was proposed in Mikolov et al. (2013a). Both algorithms were made available in the
word2vec package, and the resulting embeddings widely used in many applications.

The development of models of embeddings is an active research area, with new
models including GloVe (Pennington et al., 2014) (based on ratios of probabilities
from the word-word co-occurrence matrix), or sparse embeddings based on non-
negative matrix factorization (Fyshe et al., 2015). Many survey experiments have ex-
plored the parameterizations of different kinds of vector space embeddings and their
parameterizations, including sparse and dense vectors, and count-based and predict-
based models (Dagan 2000, ?, Curran 2003, Bullinaria and Levy 2007, Bullinaria
and Levy 2012, Lapesa and Evert 2014, Kiela and Clark 2014, Levy et al. 2015).

Exercises

Exercises 27

Agirre, E., Banea, C., Cardie, C., Cer, D., Diab, M.,
Gonzalez-Agirre, A., Guo, W., Lopez-Gazpio, I., Maritx-
alar, M., Mihalcea, R., Rigau, G., Uria, L., and Wiebe,
J. (2015). 2015 SemEval-2015 Task 2: Semantic Textual
Similarity, English, Spanish and Pilot on Interpretability.
In SemEval-15, pp. 252–263.

Agirre, E., Diab, M., Cer, D., and Gonzalez-Agirre, A.
(2012). Semeval-2012 task 6: A pilot on semantic textual
similarity. In SemEval-12, pp. 385–393.

Bellegarda, J. R. (1997). A latent semantic analysis frame-
work for large-span language modeling. In Eurospeech-97,
Rhodes, Greece.

Bellegarda, J. R. (2000). Exploiting latent semantic infor-
mation in statistical language modeling. Proceedings of
the IEEE, 89(8), 1279–1296.

Bengio, Y., Ducharme, R., Vincent, P., and Janvin, C. (2003).
A neural probabilistic language model. JMLR, 3, 1137–
1155.

Bengio, Y., Schwenk, H., Senécal, J.-S., Morin, F., and Gau-
vain, J.-L. (2006). Neural probabilistic language models. In
Innovations in Machine Learning, pp. 137–186. Springer.

Blei, D. M., Ng, A. Y., and Jordan, M. I. (2003). Latent
Dirichlet allocation. Journal of Machine Learning Re-
search, 3(5), 993–1022.

Bullinaria, J. A. and Levy, J. P. (2007). Extracting seman-
tic representations from word co-occurrence statistics: A
computational study. Behavior research methods, 39(3),
510–526.

Bullinaria, J. A. and Levy, J. P. (2012). Extracting se-
mantic representations from word co-occurrence statistics:
stop-lists, stemming, and svd. Behavior research methods,
44(3), 890–907.

Church, K. W. and Hanks, P. (1989). Word association
norms, mutual information, and lexicography. In ACL-89,
Vancouver, B.C., pp. 76–83.

Church, K. W. and Hanks, P. (1990). Word association
norms, mutual information, and lexicography. Computa-
tional Linguistics, 16(1), 22–29.

Coccaro, N. and Jurafsky, D. (1998). Towards better inte-
gration of semantic predictors in statistical language mod-
eling. In ICSLP-98, Sydney, Vol. 6, pp. 2403–2406.

Collobert, R. and Weston, J. (2007). Fast semantic extraction
using a novel neural network architecture. In ACL-07, pp.
560–567.

Collobert, R. and Weston, J. (2008). A unified architec-
ture for natural language processing: Deep neural networks
with multitask learning. In ICML, pp. 160–167.

Collobert, R., Weston, J., Bottou, L., Karlen, M.,
Kavukcuoglu, K., and Kuksa, P. (2011). Natural language
processing (almost) from scratch. The Journal of Machine
Learning Research, 12, 2493–2537.

Curran, J. R. (2003). From Distributional to Semantic Simi-
larity. Ph.D. thesis, University of Edinburgh.

Dagan, I. (2000). Contextual word similarity. In Dale, R.,
Moisl, H., and Somers, H. L. (Eds.), Handbook of Natural
Language Processing. Marcel Dekker.

Dagan, I., Lee, L., and Pereira, F. C. N. (1999). Similarity-
based models of cooccurrence probabilities. Machine
Learning, 34(1–3), 43–69.

Dagan, I., Marcus, S., and Markovitch, S. (1993). Contex-
tual word similarity and estimation from sparse data. In
ACL-93, Columbus, Ohio, pp. 164–171.

Dagan, I., Pereira, F. C. N., and Lee, L. (1994). Similarity-
base estimation of word cooccurrence probabilities. In
ACL-94, Las Cruces, NM, pp. 272–278.

Deerwester, S., Dumais, S., Furnas, G., Harshman, R., Lan-
dauer, T., Lochbaum, K., and Streeter, L. (1988). Com-
puter information retrieval using latent semantic structure:
Us patent 4,839,853..

Deerwester, S. C., Dumais, S. T., Landauer, T. K., Furnas,
G. W., and Harshman, R. A. (1990). Indexing by latent
semantics analysis. JASIS, 41(6), 391–407.

Fano, R. M. (1961). Transmission of Information: A Statis-
tical Theory of Communications. MIT Press.

Finkelstein, L., Gabrilovich, E., Matias, Y., Rivlin, E., Solan,
Z., Wolfman, G., and Ruppin, E. (2002). Placing search in
context: The concept revisited. ACM Transactions on In-
formation Systems, 20(1), 116––131.

Firth, J. R. (1957). A synopsis of linguistic theory 1930–
1955. In Studies in Linguistic Analysis. Philological Soci-
ety. Reprinted in Palmer, F. (ed.) 1968. Selected Papers of
J. R. Firth. Longman, Harlow.

Fyshe, A., Wehbe, L., Talukdar, P. P., Murphy, B., and
Mitchell, T. M. (2015). A compositional and interpretable
semantic space. In NAACL HLT 2015.

Gould, S. J. (1980). The Panda’s Thumb. Penguin Group.
Grefenstette, G. (1994). Explorations in Automatic The-

saurus Discovery. Kluwer, Norwell, MA.
Harris, Z. S. (1954). Distributional structure. Word, 10,

146–162. Reprinted in J. Fodor and J. Katz, The Struc-
ture of Language, Prentice Hall, 1964 and in Z. S. Har-
ris, Papers in Structural and Transformational Linguistics,
Reidel, 1970, 775–794.

Harris, Z. S. (1968). Mathematical Structures of Language.
John Wiley.

Hill, F., Reichart, R., and Korhonen, A. (2015). Simlex-999:
Evaluating semantic models with (genuine) similarity esti-
mation. Preprint published on arXiv. arXiv:1408.3456.

Hindle, D. (1990). Noun classification from predicate-
argument structures. In ACL-90, Pittsburgh, PA, pp. 268–
275.

Hjelmslev, L. (1969). Prologomena to a Theory of Lan-
guage. University of Wisconsin Press. Translated by Fran-
cis J. Whitfield; original Danish edition 1943.

Hofmann, T. (1999). Probabilistic latent semantic indexing.
In SIGIR-99, Berkeley, CA.

Huang, E. H., Socher, R., Manning, C. D., and Ng, A. Y.
(2012). Improving word representations via global context
and multiple word prototypes. In ACL 2012, pp. 873–882.

Jaccard, P. (1908). Nouvelles recherches sur la distribution
florale. Bulletin de la Société Vaudoise des Sciences Na-
turelles, 44, 223–227.

Jaccard, P. (1912). The distribution of the flora of the alpine
zone. New Phytologist, 11, 37–50.

Jones, M. P. and Martin, J. H. (1997). Contextual spelling
correction using latent semantic analysis. In ANLP 1997,
Washington, D.C., pp. 166–173.

Joos, M. (1950). Description of language design. JASA, 22,
701–708.

28 Chapter 19 • Vector Semantics

Katz, J. J. and Fodor, J. A. (1963). The structure of a seman-
tic theory. Language, 39, 170–210.

Kiela, D. and Clark, S. (2014). A systematic study of seman-
tic vector space model parameters. In Proceedings of the
EACL 2nd Workshop on Continuous Vector Space Models
and their Compositionality (CVSC), pp. 21–30.

Kullback, S. and Leibler, R. A. (1951). On information and
sufficiency. Annals of Mathematical Statistics, 22, 79–86.

Landauer, T. K. and Dumais, S. T. (1997). A solution to
Plato’s problem: The Latent Semantic Analysis theory of
acquisition, induction, and representation of knowledge.
Psychological Review, 104, 211–240.

Lapesa, G. and Evert, S. (2014). A large scale evaluation
of distributional semantic models: Parameters, interactions
and model selection. TACL, 2, 531–545.

Lee, D. D. and Seung, H. S. (1999). Learning the parts
of objects by non-negative matrix factorization. Nature,
401(6755), 788–791.

Lee, L. (1999). Measures of distributional similarity. In ACL-
99, pp. 25–32.

Lee, L. (2001). On the effectiveness of the skew divergence
for statistical language analysis. In Artificial Intelligence
and Statistics, pp. 65–72.

Levy, O. and Goldberg, Y. (2014a). Linguistic regularities in
sparse and explicit word representations. In CoNLL-14.

Levy, O. and Goldberg, Y. (2014b). Neural word embedding
as implicit matrix factorization. In NIPS 14, pp. 2177–
2185.

Levy, O., Goldberg, Y., and Dagan, I. (2015). Improving dis-
tributional similarity with lessons learned from word em-
beddings. TACL, 3, 211–225.

Lin, D. (1998). Automatic retrieval and clustering of similar
words. In COLING/ACL-98, Montreal, pp. 768–774.

Lin, D. and Pantel, P. (2001). Dirt: discovery of inference
rules from text. In KDD-01, pp. 323–328.

Luhn, H. P. (1957). A statistical approach to the mechanized
encoding and searching of literary information. IBM Jour-
nal of Research and Development, 1(4), 309–317.

Manning, C. D. and Schütze, H. (1999). Foundations of Sta-
tistical Natural Language Processing. MIT Press.

Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013). Ef-
ficient estimation of word representations in vector space.
In ICLR 2013.

Mikolov, T., Kombrink, S., Burget, L., Černockỳ, J. H., and
Khudanpur, S. (2011). Extensions of recurrent neural net-
work language model. In ICASSP-11, pp. 5528–5531.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and
Dean, J. (2013a). Distributed representations of words and
phrases and their compositionality. In NIPS 13, pp. 3111–
3119.

Mikolov, T., Yih, W.-t., and Zweig, G. (2013b). Linguistic
regularities in continuous space word representations. In
NAACL HLT 2013, pp. 746–751.

Nida, E. A. (1975). Componential Analysis of Meaning: An
Introduction to Semantic Structures. Mouton, The Hague.

Niwa, Y. and Nitta, Y. (1994). Co-occurrence vectors from
corpora vs. distance vectors from dictionaries. In ACL-94,
pp. 304–309.

Osgood, C. E., Suci, G. J., and Tannenbaum, P. H. (1957).
The Measurement of Meaning. University of Illinois Press.

Padó, S. and Lapata, M. (2007). Dependency-based con-
struction of semantic space models. Computational Lin-
guistics, 33(2), 161–199.

Pennington, J., Socher, R., and Manning, C. D. (2014).
Glove: Global vectors for word representation. In EMNLP
2014, pp. 1532–1543.

Pereira, F. C. N., Tishby, N., and Lee, L. (1993). Distribu-
tional clustering of English words. In ACL-93, Columbus,
Ohio, pp. 183–190.

Rehder, B., Schreiner, M. E., Wolfe, M. B. W., Laham, D.,
Landauer, T. K., and Kintsch, W. (1998). Using Latent
Semantic Analysis to assess knowledge: Some technical
considerations. Discourse Processes, 25(2-3), 337–354.

Rohde, D. L. T., Gonnerman, L. M., and Plaut, D. C. (2006).
An improved model of semantic similarity based on lexical
co-occurrence. Communications of the ACM, 8, 627–633.

Salton, G. (1971). The SMART Retrieval System: Experi-
ments in Automatic Document Processing. Prentice Hall.

Schone, P. and Jurafsky, D. (2000). Knowlege-free induction
of morphology using latent semantic analysis. In CoNLL-
00.

Schone, P. and Jurafsky, D. (2001). Knowledge-free induc-
tion of inflectional morphologies. In NAACL 2001.

Schütze, H. (1992). Dimensions of meaning. In Proceedings
of Supercomputing ’92, pp. 787–796. IEEE Press.

Schütze, H. (1997). Ambiguity Resolution in Language
Learning – Computational and Cognitive Models. CSLI,
Stanford, CA.

Schütze, H. and Pedersen, J. (1993). A vector model for syn-
tagmatic and paradigmatic relatedness. In Proceedings of
the 9th Annual Conference of the UW Centre for the New
OED and Text Research, pp. 104–113.

Sparck Jones, K. (1972). A statistical interpretation of term
specificity and its application in retrieval. Journal of Doc-
umentation, 28(1), 11–21.

Sparck Jones, K. (1986). Synonymy and Semantic Classifi-
cation. Edinburgh University Press, Edinburgh. Republi-
cation of 1964 PhD Thesis.

Turney, P. D. and Pantel, P. (2010). From frequency to mean-
ing: Vector space models of semantics. JAIR, 37(1), 141–
188.

Wierzbicka, A. (1992). Semantics, Culture, and Cognition:
University Human Concepts in Culture-Specific Configura-
tions. Oxford University Press.

Wierzbicka, A. (1996). Semantics: Primes and Universals.
Oxford University Press.

	Vector Semantics
	Words and Vectors
	Vectors and documents
	Words as vectors

	Weighing terms: Pointwise Mutual Information (PMI)
	Alternatives to PPMI for measuring association

	Measuring similarity: the cosine
	Alternative Similarity Metrics

	Using syntax to define a word's context
	Dense Vectors via SVD
	Latent Semantic Analysis
	SVD applied to word-context matrices

	Embeddings from prediction: Skip-gram and CBOW
	Learning the word and context embeddings
	Properties of the embeddings
	CBOW

	Properties of embeddings
	Evaluating Vector Models
	Summary
	Bibliographical and Historical Notes
	Exercises

