CS565: Intelligent Systems and Interfaces

Lecture: Language Modeling $28^{\text {th }}$ Jan, 2016
Semester: Jan - May 2016

Ashish Anand
IIT Guwahati

Recap and Moving Forward

- Until Now
- Sentence segmentation, Tokenization
- Collocation
- Next
- Language Modeling: Generative model of language

Understanding Language Modeling

Language Modeling (LM)

- Assigning probabilities to
- possible next words
- sequence of words
- Word Prediction
- I am attending
- What is the difference between generative and
- Need to estimate $P\left(w_{n} / w_{1}, w_{2}, w_{3}, \ldots, w_{n-1}\right)$

Applications

- Speech Recognition
- P(I saw a van) > P(I saw 7)
- Spell Correction
- P(study was conducted by students) > P(study was conducted be students)
- Other Application
- Machine Translation, Summarization, Augmentative communication system etc.
- Need to compute $P\left(w_{1}, w_{2}, w_{3}, \ldots ., w_{n}\right)$

Defining LM Formally

- We consider a vocabulary, a finite set denoted as \mathcal{V}, and a function $P\left(w_{1}, w_{2}, w_{3}, \ldots ., w_{n}\right)$, such that
- For any $\left\langle w_{1}, w_{2}, w_{3}, \ldots ., w_{n}\right\rangle \in \mathcal{V}^{+}, p(w 1, w 2, w 3, \ldots, w n) \geq 0$
- $\Sigma p(w 1, w 2, w 3, \ldots, w n)=1$,
where $\mathcal{V}^{+}:\left\{S=w_{1} w_{2} w_{3} \ldots w_{n} \mid w_{i} \in \mathcal{V}\right\}$.

How to compute $\mathrm{P}\left(\mathrm{w}_{1}, \mathrm{w}_{2}, . ., \mathrm{w}_{\mathrm{n}}\right)$

- Our task is to compute
$\mathrm{P}(\mathrm{I}$, am, fascinated, with, recent, advances, in, AI)
- Chain Rule
- $P\left(w_{1}, w_{2}, w_{3}, \ldots ., w_{n}\right)=P\left(w_{1}\right) P\left(w_{2} \mid w_{1}\right) P\left(w_{3} \mid w_{1}, w_{2}\right) \ldots . P\left(w_{n} \mid w_{1}, . ., w_{n-1}\right)$

Estimating $\mathrm{P}\left(\mathrm{w}_{\mathrm{n}} \mid \mathrm{w}_{1}, . ., \mathrm{w}_{\mathrm{n}-1}\right)$

- Could we just count and divide?

$$
P(e a t \mid I \text { want to })=\frac{\operatorname{count}(I \text { want to eat })}{\operatorname{count}(\text { I want to })}
$$

- What is the problem here?

Estimating $\mathrm{P}\left(\mathrm{w}_{\mathrm{n}} \mid \mathrm{w}_{1}, . ., \mathrm{w}_{\mathrm{n}-1}\right)$

- Too many possible sentences
- Data sparseness
- Poor generalizability

Markov Assumption

- Simplifying assumption:

$$
P(\text { eat } \mid I \text { want to }) \sim P(\text { eat } \mid \text { to })
$$

or

$$
P(\text { eat } \mid I \text { want to }) \sim P(\text { eat } \mid \text { want to })
$$

Markov Assumption

$$
P\left(w_{1}, w_{2}, w_{3}, \ldots ., w_{n}\right) \sim \prod_{i} P\left(w_{i} \mid w_{i-k}, \ldots ., w_{i-1}\right)
$$

i.e., Each component in the product is getting approximated by Markov assumption

$$
P\left(w_{i} \mid w_{1}, w_{2}, w_{3}, \ldots ., w_{i-1}\right) \sim P\left(w_{i} \mid w_{i-k}, \ldots ., w_{i-1}\right)
$$

N-gram Models

- Unigram: Simplest Model (does not depend on anything)

$$
P\left(w_{1}, w_{2}, w_{3}, \ldots ., w_{n}\right) \sim \prod_{i} P(w i)
$$

- Bigram Model ($1^{\text {st }}$ Order Markov model)

$$
P\left(w_{1}, w_{2}, w_{3}, \ldots ., w_{n}\right) \sim \prod_{i} P\left(w_{i} \mid w_{i-1}\right)
$$

- Trigram Model ($2^{\text {nd }}$ order Markov model)

$$
P\left(w_{1}, w_{2}, w_{3}, \ldots ., w_{n}\right) \sim \prod_{i} P\left(w_{i} \mid w_{i-1}, w_{i-2}\right)
$$

N-gram Model: Issue

- Long-distance dependencies
"The computer which I had just put into the lab on the fifth floor crashed"

Estimating the Probabilities

Data

- Training
- Development
- Test

Maximum Likelihood Estimate

- Unigram

$$
P\left(w_{i}\right)=\frac{c\left(w_{i}\right)}{K} ;
$$

K: Total number of tokens in training set

- Bigram

$$
P\left(w_{i} \mid w_{i-1}\right)=\frac{c\left(w_{i-1}, w_{i}\right)}{c\left(w_{i-1}\right)}
$$

- N-Gram

$$
P\left(w_{n} \mid w_{n-N+1}^{n-1}\right)=\frac{c\left(w_{n-N+1}^{n-1} w_{n}\right)}{c\left(w_{n-N+1}^{n-1}\right)}
$$

Bigram Probabilities

eat on	.16	eat Thai	.03
eat some	.06	eat breakfast	.03
eat lunch	.06	eat in	.02
eat dinner	.05	eat Chinese	.02
eat at	.04	eat Mexican	.02
eat a	.04	eat tomorrow	.01
eat Indian	.04	eat dessert	.007
eat today	.03	eat British	.001

A fragment of bigram probabilities from the Berkeley Restaurant Project showing most likely word to follow eat

Source: Figure 6.2: Page 225, SLP

Computing probability of a sentence

<S> I . 25	I want . 32	want to . 65	6	British food . 60
<s> I'd . 06	I would .29	want a . 05	to have . 14	British restaurant . 15
<s> Tell . 04	I don't . 08	want some . 04	to spend . 09	British cuisine $\quad .01$
<s> I'm . 02	I have . 04	want thai .01	to be . 02	British lunch . 01

Figure 6.3 More fragments from the bigram grammar from the Berkeley Restaurant Project.

P(<s>| want to eat British food </s>) = P(I|<s>) P(want|I) P(to|want) P(eat|to) P(British|eat) P(food|British) P(</s>|food)

Practical Issue

- Avoiding underflow
- Work in log space

$$
\log \left(p_{1}, p_{2}, p_{3}, p_{4}\right)=\sum \log p_{i}
$$

Do we see any problem here?

- Bigram counts

	I	want	to	eat	Chinese	food	lunch
I	8	1087	0	13	0	0	0
want	3	0	786	0	6	8	6
to	3	0	10	860	3	0	12
eat	0	0	2	0	19	2	52
Chinese	2	0	0	0	0	120	1
food	19	0	17	0	0	0	0
lunch	4	0	0	0	0	1	0

Problem with MLE

	I	want	to	eat	Chinese	food	lunch
I	.0023	.32	0	.0038	0	0	0
want	.0025	0	.65	0	.0049	.0066	.0049
to	.00092	0	.0031	.26	.00092	0	.0037
eat	0	0	.0021	0	.020	.0021	.055
Chinese	.0094	0	0	0	0	.56	.0047
food	.013	0	.011	0	0	0	0
lunch	.0087	0	0	0	0	.0022	0

Problem with MLE

- Shakespeare as corpus
- $\mathrm{N}=884,647$ tokens; $\mathrm{V}=29066$
- Bigrams in corpus: 300,000 [Possible: V^2]
- 99.96% of possible bigrams never seen.
- What will happen with higher order?

Problem: Continued

- Works well if test corpus is very similar to training, which is not generally the case.
- Training Set
...... denied the allegations
...... denied the reports
...... denied the claims
...... denied the request
- Test Set
.... denied the offer
.... denied the loan
P("offer" | denied the) $=0$

Generalization and taking care of zero or low probability

- Smoothing Techniques: Next Lecture
- Evaluation of N-Gram Models: Next Lecture

Reference

- Collins Lecture on Language Modeling
- Chapter 6-6.2: Speech and Language Processing [SLP], Jurafsky and Martin

