CS 565: Intelligent Systems and Interfaces

Lecture: Words - Collocations 20th – 21st Jan, 2016 Semester: Jan - May 2016

> Ashish Anand IIT Guwahati

Continuing with words

 Start up, Stand Up India, New Delhi, Take a break, Strong tea, Stiff breeze

Understanding Collocation

Collocations: Definition

- Expressing ourselves with the help of two or more words corresponding to conventional way of saying things or the combination of words which usually go together.
- Examples
 - Strong Tea, Stiff breeze, Take a risk, Start up, New Delhi

Collocations: Definition

- [Choueka, 1988]: "A sequence of two or more consecutive words, that has characteristics of a syntactic and semantic unit, and whose exact, unambiguous meaning or connotation cannot be derived directly from the meaning or connotation of its components"
- Limitation
 - We may do away with the requirement of words being consecutive.
- Example
 - <u>Knocked</u> on the <u>door</u>
 - <u>Knocked</u> on my <u>door</u>
 - <u>Knocked</u> at the class-room <u>door</u>

Characteristics

- Limited compositionality
 - Example: Strong Tea

An expression is *compositional* if its meaning can be predicted from the meaning of the parts.

- Non substitutability
 - Example: *yellow* cannot replace *white* in *"white wine"*.
- Non-modifiability: can't be modified using additional lexical materials or through grammatical transformations.
 - Example: people as poor as church <u>mice</u>; to get an <u>ugly</u> frog in one's throat.

Why it is important?

- Computational lexicography
- Parsing
- Machine Translation

Finding Collocations

Frequency

• Assumption: More frequent occurrence of two words together may imply special function or property which can't be simply explained

$C(w^1 w^2)$	w^1	w^2
80871	of	the
58841	in	the
26430	to	the
21842	on	the
21839	for	the
18568	and	the
16121	that	the
15630	at	the
15494	to	be
13899	in	a

Frequency based methods for finding collocations

Source: Table 5.1[FSNLP: Page 154]

Corpus: New York Times newswire-Aug to Nov 1990. Statistics: 115 MB text with roughly 14 million words

Adding linguistic knowledge to Frequency

Tag Pattern
AN
ΝΝ
AAN
ΑΝΝ
NAN
ΝΝΝ
ΝΡΝ

- 1. Part of Speech (PoS) tag patterns for collocation filtering.
- 2. Patterns were proposed by *Justeson and Katz* (1995).
- 3. [A]djective; [N]oun; [P]reposition

Source: Table 5.2 [FSNLP: 154]

11487	Now	W ²	Tag Pattern
7261	Inew Linite 1	York	AN
5412	United	States	AN
3301	LOS	Angeles	NN
3101	last	year	AN
2600	Saudi	Arabia	NN
2033	last	week	AN
2314	Vice	president	AN
2370	Persian	Gulf	AN
2101	San	Francisco	NN
2106	President	Bush	NN
2001	Middle	East	AN
1942	Saddam	Hussein	NN
1867	Soviet	Union	AN
1850	White	House	AN
1633	United	Nations	AN
1337	York	City	NN
1328	oil	prices	NN
1210	next	year	AN
1074	chief	executive	AN
1073	real	estate	AN

Source: Table 5.3 [FSNLP: Page 155]

Pros and Cons of Frequency+PoS Filter

- Advantages
 - Simple method
- Disadvantages
 - Too much dependency on hand-designed filter
 - High frequency can be random without any specific meaning
 - Works well for fixed phrases but will not work for cases where variable number of words may exist between two words
 - Example
 - She <u>knocked</u> on his <u>door</u>
 - They <u>knocked</u> at the <u>door</u>
 - 100 women <u>knocked</u> on Donaldson's <u>door</u>
 - a man <u>knocked</u> on the metal front <u>door</u>

Sliding window could be savior

Sentence:

man knocked on the front door

Bigrams:

man knocked	man on	man the	man front	
	knocked on	knocked the	knocked front	knocked door
		on the	on front	on door
			the front	the door
				front door

Four word collocational window to capture bigrams at a distance

Mean and Variance

- Can implicitly take care of varying distance issue
- Method
 - Calculate mean of offsets (signed distance) between the two words.

She <u>knocked</u> on his <u>door</u> They <u>knocked</u> at the <u>door</u> 100 women <u>knocked</u> on Donaldson's <u>door</u> a man <u>knocked</u> on the metal front <u>door</u>

• Mean,
$$\bar{d} = \frac{1}{4}(3 + 3 + 5 + 5)$$

[Donaldson's tokenized as : Donaldson, apostrophe, s]

• Variance,
$$s^2 = \frac{\sum_{i=1}^{n} (d_i - \overline{d})^2}{n-1}$$

S	ā	Count	Mond 1	1
0.43	0.07	Count	word 1	Word 2
0.10	0.97	11657	New	York
0.48	1.83	24	previous	games
0.15	2.98	46	minus	noints
_0.49	3.87	131	hundreds	dollars
4.03	0.44	36	editorial	Atlanta
4 03	0.00	70	cultorial	Auanta
2.00	0.00	10	ring	New
3.96	0.19	119	point	hundredth
3.96	0.29	106	subscribers	by
1.07	1.45	80	strong	support
1.13	2.57	7	powerful	organizations
1.01	2.00	112	Richard	Nixon
1.05	0.00	10	Garrison	said

Table 5.5 Finding collocations based on mean and variance. Sample deviation *s* and sample mean \overline{d} of the distances between 12 word pairs.

Source: Table 5.5 [FSNLP: page 161]

Source: Figure 5.2 [FSNLP: page 160]

Source: Figure 5.2 [FSNLP: page 160]

Reference

- Chapter 5: Until 5.2 FSNLP
- FSNLP: Foundations of Statistical Natural Language Processing, Manning & Schütze