1) Let $x \sim \operatorname{Hgpergeometric}(b, r, k)$.

$$
\therefore \text { PMF of } x=P_{X}(x)=\left\{\begin{array}{l}
\frac{\binom{b}{x}\binom{r}{k-x}}{\binom{b+r}{k}}, \text { for } x \in R_{x} \\
0,
\end{array}\right.
$$

where

$$
\begin{aligned}
R_{x} & =\text { range of } X \\
& =\{\max (0, k-r),(\max (0, k-r)+1), \min (k, b)\}
\end{aligned}
$$

To prove that $P_{X}(x)$ is valid, we need to show that (i) $P_{X}(x) \geqslant 0, \forall x$.
(ii)

$$
\sum_{x \in R_{x}} P_{x}(x)=1
$$

Proof for (i)

$$
\binom{b}{x},\binom{r}{k-x},\binom{b+r}{k} \in \begin{aligned}
& \text { set of } \\
& \text { nonnegative } \\
& \text { integers. }
\end{aligned}
$$

f \because they are n represent no. of ways some objects can be combined.
$\therefore \begin{gathered}\text { For any } \\ \text { value } \\ \text { of } x\end{gathered}, \frac{\binom{b}{x}\binom{r}{k-x}}{\binom{b+r}{k}} \geqslant 0 \Rightarrow P_{X}(x) \geqslant 0$.
(Proved.)

Proof for (ii)

$$
\begin{aligned}
\sum_{x \in R_{x}} P_{x}(x) & =\sum_{x \in R_{x}} \frac{\binom{b}{x}\binom{r}{k-x}}{\binom{b+r}{k}} \\
& =\binom{b+r}{k}^{-1} \sum_{x \in R_{x}}\binom{b}{x}\binom{r}{k-x} \cdots\left(e_{1}\right)
\end{aligned}
$$

By binomial theorem,

$$
\begin{aligned}
& \sum_{k=0}^{b+r}\binom{b+r}{k} y^{k}=(1+y)^{b+r} \\
&=(1+y)^{b}(1+y)^{r} \\
&=\left(\sum_{i=0}^{b}\binom{b}{i} y^{i}\right)\left(\sum_{j=0}^{r}\binom{r}{j} y^{j}\right) \\
&=\sum_{k=0}^{\text {Again by }} \begin{array}{l}
\text { binomial } \\
\text { theorem }
\end{array} \\
& \sum_{x=0}^{k+r}\binom{b}{x} y^{x} \cdot\binom{r}{k-x} y^{k-x}
\end{aligned}
$$

$T \because x$ replaces $i ; \ldots(k-x)$ replaces $i ; A l l$ the bounds
<contd.〉

$$
=\sum_{k=0}^{b+r}\left(\sum_{x=0}^{k}\binom{b}{x}\binom{r}{k-x} y^{k}\right)
$$

$$
=\sum_{k=0}^{b+\infty}\left(\sum_{x=0}^{k}\binom{b}{x}\binom{r}{k-x}\right) y^{k}
$$

$$
\Rightarrow\binom{b+r}{k}=\sum_{\substack{k=0 \\ x=0}}^{k}\binom{b}{x}\binom{r}{k-x} \cdots(e 2)
$$

[Note: Equation (eq) is known as Vandermonde's identity when $m, n, r \in \mathbb{N}_{0}=\{0,1,2,3, \ldots\}$. You may check wikipedia for more interesting ways to prove this identity.
\therefore For $\quad 0 \leqslant x \leqslant k$,

$$
\begin{aligned}
& \frac{P(x)}{(0 \leqslant x \leqslant k)}\binom{b+r}{k} \\
\Rightarrow & \frac{P}{(0 \leqslant x \leqslant k)}(x)=1 \cdots(e 3)
\end{aligned}
$$

For $\quad x<0$,

$$
\begin{aligned}
& P_{(x<0)}(x) 0 \\
& \cdots(e 4)
\end{aligned} \quad\left[\begin{array}{l}
\because\binom{b}{x} \text { in }(e 1) \\
\text { will always be zero. }
\end{array}\right.
$$

For $x>k$,

$$
\begin{aligned}
& \therefore \sum_{x \in R x} P_{x}(x)=\sum_{x<0} P_{x}(x)+\sum_{0 \leqslant x \leqslant k} P_{x}(x)+\sum_{x>k} P_{x}^{(x)} \\
& =0+1+0 \\
& \text { IBy (e3), (e4), (e5) } \\
& =1 \text {. (Proved.) }
\end{aligned}
$$

6. The Matching Problem

Sol. We previously found that Please check "The Matching Problem" discussed in the HOS

$$
P\left(X_{N}=0\right)=\frac{1}{2!}-\frac{1}{3!}+\frac{1}{4!}-\cdots(-1)^{N} \frac{1}{N!} \text { for } N=1,2, \cdots
$$

Using this we will find $P\left(x_{N}=k\right)$ for all $k \in\{0,1, \cdots, n$ Let us first calculate $P\left(X_{N}=1\right)$.
This is the probability that exactly one person receives his/her hat. We can fix this person. Therefore, the rest of the people (N-1 people) cont receive their row n hats.
\&o, there are N ways to choose the persis oho gel's his/her own hat.
The probability that the chosen person gets histher hat is equal to $\frac{1}{\mathrm{~N}}$.
The probability that none of the other $N-1$ people receive their ono halo is $P\left(X_{N-1}=0\right)$.
So, we have

Similarly, for calculating $P\left(X_{N}=2\right)$, there are $\binom{N}{2}$ ways to choose two people who get their ours hab.
$\frac{1}{N} \cdot \frac{1}{N-1}$ is the probability that the two chosen people receive their own hab and $P\left(X_{N-2}=0\right)$ is the probability that none of the over N-2 people receive their our hals..

$$
\begin{align*}
& \text { ople recess } \begin{aligned}
P\left(X_{N}=2\right) & =\binom{N}{2} \cdot \frac{1}{N} \cdot \frac{1}{N-1} \cdot P\left(X_{N-2}=0\right) \\
& =\frac{1}{2} P\left(X_{N-2}=0\right)=\frac{1}{2} a_{N-2}
\end{aligned} \tag{ii}
\end{align*}
$$

Io general we have,

$$
\begin{aligned}
P\left(x_{N}=k\right) & =\binom{N}{k} \cdot \frac{1}{N} \cdot \frac{1}{N-1} \cdots \frac{1}{N-k+1} \cdot P\left(X_{N-k}=0\right) \\
& =\frac{1}{k!} P\left(x_{N-k}=0\right)=\frac{1}{k!} a_{N-k} \text { for } k=0,1,2, \ldots, N
\end{aligned}
$$

Sol. Since $x \sim$ Geometric (p), we have:

$$
P_{x}(k)=(1-p)^{k-1} p \text { for } k=1,2, \ldots
$$

Thee,

$$
\begin{aligned}
p(x y m) & =\sum_{k=m+1}^{\infty}(1-p)^{k-1} p \\
& =\sum_{k=0}^{\infty}(1-p)^{k+m} \\
& =p(1-p)^{m} \sum_{k=0}^{\infty}(1-p)^{k} \\
& =p(1-p)^{m} \frac{1}{1-(1-p)} \\
& =(1-p)^{m}
\end{aligned}
$$

Similarly, $P(x>m+l)=(1-p)^{m+l}$
Therefore,

$$
\text { y) } \begin{aligned}
p(x>m+l) & =(1-p) \\
p(x>m+l \mid x>m) & =\frac{P((x>m+l) \text { and } p(x>m))}{P(x>m)} \\
& =\frac{p(x>m+l)}{P(x>m)} \\
& =\frac{(1-p)^{m+l}}{(1-p)^{m}} \\
& =(1-p)^{l} \\
& =P(x>l)
\end{aligned}
$$

proved

Sol. 11
(a). Time interval $=4 \times 60$ miens $=240$ ming

$$
\therefore \lambda=240 \times \frac{1}{30}=8 \text { (for a weekend) }
$$

Thus, $X \sim$ Frisson $(\lambda=8)$
Since no emails received in the interval

$$
\begin{aligned}
\therefore P(k=0)=\frac{e^{-\lambda} \lambda^{k}}{k!} & =\frac{e^{-\lambda} \lambda^{0}}{0!} \\
& =e^{-\lambda}=e^{-8}
\end{aligned}
$$

(b). Let D be the event that a arecklay is chosen and let E be the event that a saturday or sunday is chosen.

Then: $P(D)=\frac{5}{7}$ and $P(E)=\frac{2}{7}$
Let, A be the event that I receive no emails

$$
\begin{aligned}
& \text { during the chosen internal then: } \\
& P(A \mid D)=e^{-\lambda_{1}}=e^{-\frac{1}{6} \cdot 60}=e^{-10} \\
& P(A \mid)=e^{-\lambda_{2}}=e^{-\frac{1}{30} \cdot 60}=e^{-2} \\
& \text { Therefore. } \\
& P(D \mid A)=\frac{P(A \mid D) \cdot P(D)}{P(A)}=\frac{e^{-10} \cdot \frac{5}{7}}{P(A \mid D)_{\substack{P \\
-10}}(D)+P(A \mid E) P(E,} \\
& =\frac{\frac{5}{7} \cdot e^{-10}}{\frac{5}{7} \cdot e^{-10}+\frac{2}{7} e^{-2}}
\end{aligned}
$$

80 ne Confor collector's problem :-
(a) Let X denote the (random) number of coupons that a need to purchase in order to complete our collectici We can curie $X=X_{0} X_{1}+X_{2}+\cdots+X_{N-1}$, where for any $i=0,1,2, \ldots, N-1, X_{i}$ devolis the additional number of coupons tret che need to furchase to pass from $i *$ to $i+1$ different types of coupons in our collection.

Thus we have $X_{0}=1$ since the first coupon is always a neat one.
Also, when i distinct types of coupons have been collected, a new coupon fruchased will be of a distinct type with probability equal to $\frac{N-i}{N}$. ices, X_{i} will be a geometric random variable with success frobalilition of $\frac{N-i}{N}$. Thus we can write $X=X_{0}+X_{1}+\cdots+X_{N-1}$ where

$$
x_{i} \sim \text { Geometric }\left(\frac{N-i}{N}\right)
$$

(b). By linearity of expectation, we have,

$$
\begin{aligned}
E x & =E X_{0}+E X_{1}+\cdots+E X_{N-1} \\
& =1+\frac{N}{N-1}+\frac{N}{N-2}+\cdots+\frac{N}{1} \\
& =N\left(1+\frac{1}{2}+\cdots+\frac{1}{N-1}+\frac{1}{N}\right)
\end{aligned}
$$

Ans.
22) (a)

$$
\begin{aligned}
& R_{x}=\{1,2,4,8, \ldots\} . \\
& P_{x}(1)=\frac{1}{2} \\
& P_{x}(2)=\frac{1}{2} \cdot \frac{1}{2}=\frac{1}{4}=\frac{1}{2^{2}} \text {. } \\
& P_{x}(4)=\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}=\frac{1}{8}=\frac{1}{2^{3}} \\
& P_{x}\left(2^{k-1}\right)=\frac{1}{2^{k}} \text { for } \quad k \in\{1,2,3, \cdots\}=\mathbb{N} . \cdots(e 1) \\
& \therefore E X=\sum_{x \in R_{x}} x \cdot P_{x}(x) \\
& =1 \cdot \frac{1}{2}+\sum_{k \in \mathbb{N}}\left(2^{k-1} \cdot \frac{1}{2^{k}}\right)\left[\begin{array}{ll}
\text { by } \\
(e l)
\end{array}\right. \\
& =\sum_{k \in \mathbb{N}} \frac{1}{2} \\
& =\frac{\infty}{2}[\because \mathbb{N} \text { is an infinite set. } \\
& =\infty \text {. (Ans.) }
\end{aligned}
$$

22.(b)

$$
\begin{aligned}
P(x>65) & =P_{x}(128)+P_{x}(256)+\cdots \\
& =P_{x}\left(2^{8-1}\right)+P_{x}\left(2^{9-1}\right)+\cdots \\
& \left.=\frac{1}{2^{8}}+\frac{1}{2^{9}}+\cdots\right) \text { by }(e 1) \\
& =\frac{1}{2^{8}}\left(1+\frac{1}{2}+\frac{1}{2^{2}}+\cdots\right) \\
& =\frac{1}{2^{8}} \cdot \frac{1}{\left(1-\frac{1}{2}\right)}=\frac{1}{2^{8}} \cdot 2=\frac{1}{2^{7}} \\
& =\frac{1}{128} \cdot \text { (Ans.) }
\end{aligned}
$$

22.(c)

$$
I_{y}\left(2^{k-1}\right)= \begin{cases}\frac{1}{2^{k}}, & \text { for } k=1,2, \cdots, 30] \begin{array}{l}
\text { like } x \\
\text { in }(e 1)
\end{array} \\
\frac{1}{2^{30}}, & \text { for } k=31 \\
0, & 0 . w\end{cases}
$$

$$
\left.\begin{array}{rl}
\therefore E Y= & \sum_{\substack{y_{\in} R_{y} \\
y}} y \cdot R_{y}(y)=\binom{1 \cdot \frac{1}{2}+2 \cdot \frac{1}{2^{2}}+\cdots+30 \cdot 1}{\cdots} \\
+2^{20} \cdot \frac{1}{2^{30}}
\end{array}\right)
$$

22. (c) 〈contd.〉

$$
\begin{aligned}
\Rightarrow E Y & =\left(\frac{1}{2}+\frac{1}{2}+\cdots 30 \text { times }\right)+1 \\
& =\frac{30}{2}+1 \\
& =15+1 \\
& =16 . \quad \text { Ans. }
\end{aligned}
$$

25) (a)
case $m=1$

$$
\begin{aligned}
& m=1 \\
& P(x \geqslant m)=P(x \geqslant 1)= 0.4+ \\
&= 0.3+0.3+0 \\
& P(x \leqslant m)=P(x \leqslant 1)= 0.4+0 \\
&=0.4<\frac{1}{2}
\end{aligned}
$$

Reached a contradiction.

Case $m=2$

$$
\begin{aligned}
m(x \geqslant m) & P(x \geqslant 2) \\
& =0.3+0.3+0 \\
& =0.6 \geqslant \frac{1}{2} \\
P(x \leqslant m) & =P(x \leq 2) \\
& =0.4+0.3+0 \\
& =0.7 \geqslant \frac{1}{2}
\end{aligned}
$$

$\therefore \quad m=2$ is valid.
Case $m=3$
$P(x \geqslant m)=P(x \geqslant 3)=0.3+0=0.3<\frac{1}{2}$
Reached a contradiction.
\therefore Median of $X=m=2$. (Ans.)
25. (b)

PMF of X

$$
=P_{x}(k)= \begin{cases}\frac{1}{6}, & \text { for } k=1,2, \cdots, 6 \\ 0, & 0 . \omega\end{cases}
$$

Case $m=1$

$$
P_{2}(x \leqslant m)=P(x \leqslant 1)=\frac{1}{6}+0=\frac{1}{6}<\frac{1}{2}
$$

contradiction.

Case $m=2$

$$
P(x \leqslant m)=P(x \leqslant 2)=\frac{1}{6}+\frac{1}{6}+0=\frac{1}{3}<\frac{1}{2}
$$

contradiction.

Case $m=3$

$$
\begin{aligned}
& P(x \leqslant m)=P(x \leqslant 3)=\frac{1}{6}+\frac{1}{6}+\frac{1}{6}+0 \\
&=\frac{1}{2} \geqslant \frac{1}{2} . \\
& P(x \geqslant m)=P(x \geqslant 3)=\cdots=\frac{1}{2} \geqslant \frac{1}{2} .
\end{aligned}
$$

$\therefore \quad m=3$ is valid.
Case $m=4$

$$
\begin{aligned}
& P(x \leqslant 4)=\frac{4}{6}=\frac{2}{3} \geqslant \frac{1}{2} \\
& P(x \geqslant 4)=\frac{3}{6}=\frac{1}{2} \geqslant \frac{1}{2} \\
& \therefore m=4 \text { is valid. }
\end{aligned}
$$

\langle Pr. O. \rangle
25. (b) 〈contd.〉
case $m=5$

$$
\begin{aligned}
& P(x \leqslant 5)=\frac{5}{6} \geqslant \frac{1}{2} \\
& P(x \geqslant 5)=\frac{2}{6}=\frac{1}{3}<\frac{1}{2} . \quad \text { contradiction. }
\end{aligned}
$$

Case $m=6$

$$
\begin{aligned}
& P(x \leq 6)=\frac{6}{6}=1 \geqslant \frac{1}{2} \\
& P(x \geqslant 6)=\frac{1}{6}<\frac{1}{2} . \text { contradiction. }
\end{aligned}
$$

\therefore Medians of X are 3,4 . (Ans.)
25. (c) $\quad X \sim$ Geometric (p), where $0<p<1$.

$$
\begin{align*}
\Rightarrow \text { PMF of } x=P_{x}(k) & =(1-p)^{k-1} p \\
& =q^{k-1} \cdot p .[\text { Let } q=(1-p) . \tag{e3}
\end{align*}
$$

Let m is a median of X.

$$
\therefore \quad P(x \geqslant m) \geqslant \frac{1}{2} \quad \ldots(e 1)
$$

and $P(x \leqslant m) \geqslant \frac{1}{2} \cdots(e 2)$

$$
25 \cdot(c)\langle\text { contd }\rangle
$$

$$
P(x \leqslant m)=\sum_{k=1}^{\lfloor m\rfloor} q^{k-1} p \quad\left[\begin{array}{l}
\text { By } \\
\lfloor m .
\end{array}\right.
$$

$$
\begin{aligned}
& 3 y(e 0) \\
& \lfloor m\rfloor \text { is }
\end{aligned}
$$

$$
\begin{aligned}
& {[m\rfloor \text { is taken in case }} \\
& \text { to tighten the upper }
\end{aligned}
$$

$$
\begin{aligned}
& \text { to tighten the upper } \\
& \text { bound. }
\end{aligned}
$$

bound.

$$
=p \cdot \sum_{k=1}^{\lfloor m\rfloor} q^{k-1}
$$

$$
=p \cdot \frac{\left(1-q^{\lfloor m\rfloor-1+1}\right)}{(1-q)}
$$

$$
=p \cdot \frac{\left(1-q^{\lfloor m\rfloor}\right)}{(1-q)}
$$

$$
\Rightarrow P(x \leqslant m)=\left(1-q^{\lfloor m\rfloor}\right) \quad \begin{aligned}
& \text { By (e3) and } \\
& \because p>0 .
\end{aligned}
$$

$$
\cdots(e 4)
$$

$$
\left(1-q^{\lfloor m\rfloor}\right) \geqslant \frac{1}{2} I \text { By (ez) and (e4) }
$$

$$
\Rightarrow \quad q^{\lfloor m\rfloor} \leqslant \frac{1}{2}
$$

$$
\Rightarrow \quad l 8 q^{\lfloor m\rfloor} \leqslant \operatorname{lq} \frac{1}{2}=-1
$$

$$
\Rightarrow \quad\lfloor m\rfloor l q q \leqslant-1
$$

$$
\Rightarrow-\lfloor m\rfloor \ell q q \quad 1 \geqslant 1
$$

$25 \cdot(c)\langle$ contd .〉

$$
\begin{aligned}
& \Rightarrow\lfloor m\rfloor \ell 8 q^{-1} \geqslant 1 \\
& \Rightarrow\lfloor m\rfloor \geqslant \frac{1}{\lg \left(\frac{1}{q}\right)} \quad \cdots(25)
\end{aligned}
$$

Now,

$$
q^{\lceil m\rceil-1} \geqslant \frac{1}{2}[\text { By }(e 1) \text { and }(e 6)
$$

$$
\begin{aligned}
& \Rightarrow(\mid m\rceil-1) l q q \geqslant-1 \\
& \Rightarrow(\lceil m\rceil-1) l q \frac{1}{q} \leq 1
\end{aligned}
$$

$$
\begin{aligned}
& =q^{[m]-1} p+q^{[m]+1-1} p+q^{[m]+2-1} p+\cdots \\
& =q^{\left[m m^{2}\right.} \cdot p\left(1+q+q^{2}+\cdots \infty\right) \\
& =q^{[m]-1} \cdot p \cdot \frac{1}{1-q} \quad[\because q<1 . \\
& \Rightarrow f(x \geqslant m)=q^{[m 7-1} \begin{array}{l}
{[e 6)}
\end{array}\left[\begin{array}{l}
B y(e 3) \text { and } \\
\because p>0 .
\end{array}\right.
\end{aligned}
$$

$25 \cdot(c)\langle$ contd. \rangle

$$
\begin{aligned}
& \Rightarrow \quad\lceil m\rceil-1<\frac{1}{l 8 \frac{1}{q}} \\
& \Rightarrow \quad\lceil m\rceil \leqslant \frac{1}{l q \frac{1}{q}}+1 \quad \cdots(e 7)
\end{aligned}
$$

\therefore Any $m \in R_{x}$ that satisfies

$$
[m\rfloor \geqslant \frac{1}{\lg \left(\frac{1}{a}\right)} \quad\left[\text { By }\left(e^{5}\right)\right.
$$

and $\lceil m\rceil \leq \frac{1}{l 8\left(\frac{1}{q}\right)}+1 \quad$ By $(e 7)$
is a median of X. (Ans.)
3)

Case 3.1: Poisson distribution.
Ref: Wikipedia article on "Infinite divisibility (probabilistic'

Case 3.2 Binomial distribution Binomial (n, p) where
$n=$ total number of nodes,
$p=$ probability of a node being idle.

Case 3.3 : Hyper 8 eometric distribution.

